308 lines
7.0 KiB
Python
308 lines
7.0 KiB
Python
import pickle
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pandas._libs.missing import NA
|
|
|
|
from pandas.core.dtypes.common import is_scalar
|
|
|
|
import pandas as pd
|
|
import pandas._testing as tm
|
|
|
|
|
|
def test_singleton():
|
|
assert NA is NA
|
|
new_NA = type(NA)()
|
|
assert new_NA is NA
|
|
|
|
|
|
def test_repr():
|
|
assert repr(NA) == "<NA>"
|
|
assert str(NA) == "<NA>"
|
|
|
|
|
|
def test_format():
|
|
# GH-34740
|
|
assert format(NA) == "<NA>"
|
|
assert format(NA, ">10") == " <NA>"
|
|
assert format(NA, "xxx") == "<NA>" # NA is flexible, accept any format spec
|
|
|
|
assert f"{NA}" == "<NA>"
|
|
assert f"{NA:>10}" == " <NA>"
|
|
assert f"{NA:xxx}" == "<NA>"
|
|
|
|
|
|
def test_truthiness():
|
|
msg = "boolean value of NA is ambiguous"
|
|
|
|
with pytest.raises(TypeError, match=msg):
|
|
bool(NA)
|
|
|
|
with pytest.raises(TypeError, match=msg):
|
|
not NA
|
|
|
|
|
|
def test_hashable():
|
|
assert hash(NA) == hash(NA)
|
|
d = {NA: "test"}
|
|
assert d[NA] == "test"
|
|
|
|
|
|
def test_arithmetic_ops(all_arithmetic_functions):
|
|
op = all_arithmetic_functions
|
|
|
|
for other in [NA, 1, 1.0, "a", np.int64(1), np.nan]:
|
|
if op.__name__ in ("pow", "rpow", "rmod") and isinstance(other, str):
|
|
continue
|
|
if op.__name__ in ("divmod", "rdivmod"):
|
|
assert op(NA, other) is (NA, NA)
|
|
else:
|
|
if op.__name__ == "rpow":
|
|
# avoid special case
|
|
other += 1
|
|
assert op(NA, other) is NA
|
|
|
|
|
|
def test_comparison_ops():
|
|
|
|
for other in [NA, 1, 1.0, "a", np.int64(1), np.nan, np.bool_(True)]:
|
|
assert (NA == other) is NA
|
|
assert (NA != other) is NA
|
|
assert (NA > other) is NA
|
|
assert (NA >= other) is NA
|
|
assert (NA < other) is NA
|
|
assert (NA <= other) is NA
|
|
assert (other == NA) is NA
|
|
assert (other != NA) is NA
|
|
assert (other > NA) is NA
|
|
assert (other >= NA) is NA
|
|
assert (other < NA) is NA
|
|
assert (other <= NA) is NA
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"value",
|
|
[
|
|
0,
|
|
0.0,
|
|
-0,
|
|
-0.0,
|
|
False,
|
|
np.bool_(False),
|
|
np.int_(0),
|
|
np.float_(0),
|
|
np.int_(-0),
|
|
np.float_(-0),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("asarray", [True, False])
|
|
def test_pow_special(value, asarray):
|
|
if asarray:
|
|
value = np.array([value])
|
|
result = NA**value
|
|
|
|
if asarray:
|
|
result = result[0]
|
|
else:
|
|
# this assertion isn't possible for ndarray.
|
|
assert isinstance(result, type(value))
|
|
assert result == 1
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"value", [1, 1.0, True, np.bool_(True), np.int_(1), np.float_(1)]
|
|
)
|
|
@pytest.mark.parametrize("asarray", [True, False])
|
|
def test_rpow_special(value, asarray):
|
|
if asarray:
|
|
value = np.array([value])
|
|
result = value**NA
|
|
|
|
if asarray:
|
|
result = result[0]
|
|
elif not isinstance(value, (np.float_, np.bool_, np.int_)):
|
|
# this assertion isn't possible with asarray=True
|
|
assert isinstance(result, type(value))
|
|
|
|
assert result == value
|
|
|
|
|
|
@pytest.mark.parametrize("value", [-1, -1.0, np.int_(-1), np.float_(-1)])
|
|
@pytest.mark.parametrize("asarray", [True, False])
|
|
def test_rpow_minus_one(value, asarray):
|
|
if asarray:
|
|
value = np.array([value])
|
|
result = value**NA
|
|
|
|
if asarray:
|
|
result = result[0]
|
|
|
|
assert pd.isna(result)
|
|
|
|
|
|
def test_unary_ops():
|
|
assert +NA is NA
|
|
assert -NA is NA
|
|
assert abs(NA) is NA
|
|
assert ~NA is NA
|
|
|
|
|
|
def test_logical_and():
|
|
|
|
assert NA & True is NA
|
|
assert True & NA is NA
|
|
assert NA & False is False
|
|
assert False & NA is False
|
|
assert NA & NA is NA
|
|
|
|
msg = "unsupported operand type"
|
|
with pytest.raises(TypeError, match=msg):
|
|
NA & 5
|
|
|
|
|
|
def test_logical_or():
|
|
|
|
assert NA | True is True
|
|
assert True | NA is True
|
|
assert NA | False is NA
|
|
assert False | NA is NA
|
|
assert NA | NA is NA
|
|
|
|
msg = "unsupported operand type"
|
|
with pytest.raises(TypeError, match=msg):
|
|
NA | 5
|
|
|
|
|
|
def test_logical_xor():
|
|
|
|
assert NA ^ True is NA
|
|
assert True ^ NA is NA
|
|
assert NA ^ False is NA
|
|
assert False ^ NA is NA
|
|
assert NA ^ NA is NA
|
|
|
|
msg = "unsupported operand type"
|
|
with pytest.raises(TypeError, match=msg):
|
|
NA ^ 5
|
|
|
|
|
|
def test_logical_not():
|
|
assert ~NA is NA
|
|
|
|
|
|
@pytest.mark.parametrize("shape", [(3,), (3, 3), (1, 2, 3)])
|
|
def test_arithmetic_ndarray(shape, all_arithmetic_functions):
|
|
op = all_arithmetic_functions
|
|
a = np.zeros(shape)
|
|
if op.__name__ == "pow":
|
|
a += 5
|
|
result = op(NA, a)
|
|
expected = np.full(a.shape, NA, dtype=object)
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
|
|
def test_is_scalar():
|
|
assert is_scalar(NA) is True
|
|
|
|
|
|
def test_isna():
|
|
assert pd.isna(NA) is True
|
|
assert pd.notna(NA) is False
|
|
|
|
|
|
def test_series_isna():
|
|
s = pd.Series([1, NA], dtype=object)
|
|
expected = pd.Series([False, True])
|
|
tm.assert_series_equal(s.isna(), expected)
|
|
|
|
|
|
def test_ufunc():
|
|
assert np.log(NA) is NA
|
|
assert np.add(NA, 1) is NA
|
|
result = np.divmod(NA, 1)
|
|
assert result[0] is NA and result[1] is NA
|
|
|
|
result = np.frexp(NA)
|
|
assert result[0] is NA and result[1] is NA
|
|
|
|
|
|
def test_ufunc_raises():
|
|
msg = "ufunc method 'at'"
|
|
with pytest.raises(ValueError, match=msg):
|
|
np.log.at(NA, 0)
|
|
|
|
|
|
def test_binary_input_not_dunder():
|
|
a = np.array([1, 2, 3])
|
|
expected = np.array([NA, NA, NA], dtype=object)
|
|
result = np.logaddexp(a, NA)
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
result = np.logaddexp(NA, a)
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
# all NA, multiple inputs
|
|
assert np.logaddexp(NA, NA) is NA
|
|
|
|
result = np.modf(NA, NA)
|
|
assert len(result) == 2
|
|
assert all(x is NA for x in result)
|
|
|
|
|
|
def test_divmod_ufunc():
|
|
# binary in, binary out.
|
|
a = np.array([1, 2, 3])
|
|
expected = np.array([NA, NA, NA], dtype=object)
|
|
|
|
result = np.divmod(a, NA)
|
|
assert isinstance(result, tuple)
|
|
for arr in result:
|
|
tm.assert_numpy_array_equal(arr, expected)
|
|
tm.assert_numpy_array_equal(arr, expected)
|
|
|
|
result = np.divmod(NA, a)
|
|
for arr in result:
|
|
tm.assert_numpy_array_equal(arr, expected)
|
|
tm.assert_numpy_array_equal(arr, expected)
|
|
|
|
|
|
def test_integer_hash_collision_dict():
|
|
# GH 30013
|
|
result = {NA: "foo", hash(NA): "bar"}
|
|
|
|
assert result[NA] == "foo"
|
|
assert result[hash(NA)] == "bar"
|
|
|
|
|
|
def test_integer_hash_collision_set():
|
|
# GH 30013
|
|
result = {NA, hash(NA)}
|
|
|
|
assert len(result) == 2
|
|
assert NA in result
|
|
assert hash(NA) in result
|
|
|
|
|
|
def test_pickle_roundtrip():
|
|
# https://github.com/pandas-dev/pandas/issues/31847
|
|
result = pickle.loads(pickle.dumps(NA))
|
|
assert result is NA
|
|
|
|
|
|
def test_pickle_roundtrip_pandas():
|
|
result = tm.round_trip_pickle(NA)
|
|
assert result is NA
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"values, dtype", [([1, 2, NA], "Int64"), (["A", "B", NA], "string")]
|
|
)
|
|
@pytest.mark.parametrize("as_frame", [True, False])
|
|
def test_pickle_roundtrip_containers(as_frame, values, dtype):
|
|
s = pd.Series(pd.array(values, dtype=dtype))
|
|
if as_frame:
|
|
s = s.to_frame(name="A")
|
|
result = tm.round_trip_pickle(s)
|
|
tm.assert_equal(result, s)
|