aoc-2022/venv/Lib/site-packages/pandas/tests/scalar/test_na_scalar.py

308 lines
7.0 KiB
Python
Raw Normal View History

import pickle
import numpy as np
import pytest
from pandas._libs.missing import NA
from pandas.core.dtypes.common import is_scalar
import pandas as pd
import pandas._testing as tm
def test_singleton():
assert NA is NA
new_NA = type(NA)()
assert new_NA is NA
def test_repr():
assert repr(NA) == "<NA>"
assert str(NA) == "<NA>"
def test_format():
# GH-34740
assert format(NA) == "<NA>"
assert format(NA, ">10") == " <NA>"
assert format(NA, "xxx") == "<NA>" # NA is flexible, accept any format spec
assert f"{NA}" == "<NA>"
assert f"{NA:>10}" == " <NA>"
assert f"{NA:xxx}" == "<NA>"
def test_truthiness():
msg = "boolean value of NA is ambiguous"
with pytest.raises(TypeError, match=msg):
bool(NA)
with pytest.raises(TypeError, match=msg):
not NA
def test_hashable():
assert hash(NA) == hash(NA)
d = {NA: "test"}
assert d[NA] == "test"
def test_arithmetic_ops(all_arithmetic_functions):
op = all_arithmetic_functions
for other in [NA, 1, 1.0, "a", np.int64(1), np.nan]:
if op.__name__ in ("pow", "rpow", "rmod") and isinstance(other, str):
continue
if op.__name__ in ("divmod", "rdivmod"):
assert op(NA, other) is (NA, NA)
else:
if op.__name__ == "rpow":
# avoid special case
other += 1
assert op(NA, other) is NA
def test_comparison_ops():
for other in [NA, 1, 1.0, "a", np.int64(1), np.nan, np.bool_(True)]:
assert (NA == other) is NA
assert (NA != other) is NA
assert (NA > other) is NA
assert (NA >= other) is NA
assert (NA < other) is NA
assert (NA <= other) is NA
assert (other == NA) is NA
assert (other != NA) is NA
assert (other > NA) is NA
assert (other >= NA) is NA
assert (other < NA) is NA
assert (other <= NA) is NA
@pytest.mark.parametrize(
"value",
[
0,
0.0,
-0,
-0.0,
False,
np.bool_(False),
np.int_(0),
np.float_(0),
np.int_(-0),
np.float_(-0),
],
)
@pytest.mark.parametrize("asarray", [True, False])
def test_pow_special(value, asarray):
if asarray:
value = np.array([value])
result = NA**value
if asarray:
result = result[0]
else:
# this assertion isn't possible for ndarray.
assert isinstance(result, type(value))
assert result == 1
@pytest.mark.parametrize(
"value", [1, 1.0, True, np.bool_(True), np.int_(1), np.float_(1)]
)
@pytest.mark.parametrize("asarray", [True, False])
def test_rpow_special(value, asarray):
if asarray:
value = np.array([value])
result = value**NA
if asarray:
result = result[0]
elif not isinstance(value, (np.float_, np.bool_, np.int_)):
# this assertion isn't possible with asarray=True
assert isinstance(result, type(value))
assert result == value
@pytest.mark.parametrize("value", [-1, -1.0, np.int_(-1), np.float_(-1)])
@pytest.mark.parametrize("asarray", [True, False])
def test_rpow_minus_one(value, asarray):
if asarray:
value = np.array([value])
result = value**NA
if asarray:
result = result[0]
assert pd.isna(result)
def test_unary_ops():
assert +NA is NA
assert -NA is NA
assert abs(NA) is NA
assert ~NA is NA
def test_logical_and():
assert NA & True is NA
assert True & NA is NA
assert NA & False is False
assert False & NA is False
assert NA & NA is NA
msg = "unsupported operand type"
with pytest.raises(TypeError, match=msg):
NA & 5
def test_logical_or():
assert NA | True is True
assert True | NA is True
assert NA | False is NA
assert False | NA is NA
assert NA | NA is NA
msg = "unsupported operand type"
with pytest.raises(TypeError, match=msg):
NA | 5
def test_logical_xor():
assert NA ^ True is NA
assert True ^ NA is NA
assert NA ^ False is NA
assert False ^ NA is NA
assert NA ^ NA is NA
msg = "unsupported operand type"
with pytest.raises(TypeError, match=msg):
NA ^ 5
def test_logical_not():
assert ~NA is NA
@pytest.mark.parametrize("shape", [(3,), (3, 3), (1, 2, 3)])
def test_arithmetic_ndarray(shape, all_arithmetic_functions):
op = all_arithmetic_functions
a = np.zeros(shape)
if op.__name__ == "pow":
a += 5
result = op(NA, a)
expected = np.full(a.shape, NA, dtype=object)
tm.assert_numpy_array_equal(result, expected)
def test_is_scalar():
assert is_scalar(NA) is True
def test_isna():
assert pd.isna(NA) is True
assert pd.notna(NA) is False
def test_series_isna():
s = pd.Series([1, NA], dtype=object)
expected = pd.Series([False, True])
tm.assert_series_equal(s.isna(), expected)
def test_ufunc():
assert np.log(NA) is NA
assert np.add(NA, 1) is NA
result = np.divmod(NA, 1)
assert result[0] is NA and result[1] is NA
result = np.frexp(NA)
assert result[0] is NA and result[1] is NA
def test_ufunc_raises():
msg = "ufunc method 'at'"
with pytest.raises(ValueError, match=msg):
np.log.at(NA, 0)
def test_binary_input_not_dunder():
a = np.array([1, 2, 3])
expected = np.array([NA, NA, NA], dtype=object)
result = np.logaddexp(a, NA)
tm.assert_numpy_array_equal(result, expected)
result = np.logaddexp(NA, a)
tm.assert_numpy_array_equal(result, expected)
# all NA, multiple inputs
assert np.logaddexp(NA, NA) is NA
result = np.modf(NA, NA)
assert len(result) == 2
assert all(x is NA for x in result)
def test_divmod_ufunc():
# binary in, binary out.
a = np.array([1, 2, 3])
expected = np.array([NA, NA, NA], dtype=object)
result = np.divmod(a, NA)
assert isinstance(result, tuple)
for arr in result:
tm.assert_numpy_array_equal(arr, expected)
tm.assert_numpy_array_equal(arr, expected)
result = np.divmod(NA, a)
for arr in result:
tm.assert_numpy_array_equal(arr, expected)
tm.assert_numpy_array_equal(arr, expected)
def test_integer_hash_collision_dict():
# GH 30013
result = {NA: "foo", hash(NA): "bar"}
assert result[NA] == "foo"
assert result[hash(NA)] == "bar"
def test_integer_hash_collision_set():
# GH 30013
result = {NA, hash(NA)}
assert len(result) == 2
assert NA in result
assert hash(NA) in result
def test_pickle_roundtrip():
# https://github.com/pandas-dev/pandas/issues/31847
result = pickle.loads(pickle.dumps(NA))
assert result is NA
def test_pickle_roundtrip_pandas():
result = tm.round_trip_pickle(NA)
assert result is NA
@pytest.mark.parametrize(
"values, dtype", [([1, 2, NA], "Int64"), (["A", "B", NA], "string")]
)
@pytest.mark.parametrize("as_frame", [True, False])
def test_pickle_roundtrip_containers(as_frame, values, dtype):
s = pd.Series(pd.array(values, dtype=dtype))
if as_frame:
s = s.to_frame(name="A")
result = tm.round_trip_pickle(s)
tm.assert_equal(result, s)