aoc-2022/venv/Lib/site-packages/pandas/tests/frame/methods/test_duplicated.py

114 lines
3.1 KiB
Python

import re
import numpy as np
import pytest
from pandas import (
DataFrame,
Series,
date_range,
)
import pandas._testing as tm
@pytest.mark.parametrize("subset", ["a", ["a"], ["a", "B"]])
def test_duplicated_with_misspelled_column_name(subset):
# GH 19730
df = DataFrame({"A": [0, 0, 1], "B": [0, 0, 1], "C": [0, 0, 1]})
msg = re.escape("Index(['a'], dtype='object')")
with pytest.raises(KeyError, match=msg):
df.duplicated(subset)
@pytest.mark.slow
def test_duplicated_do_not_fail_on_wide_dataframes():
# gh-21524
# Given the wide dataframe with a lot of columns
# with different (important!) values
data = {f"col_{i:02d}": np.random.randint(0, 1000, 30000) for i in range(100)}
df = DataFrame(data).T
result = df.duplicated()
# Then duplicates produce the bool Series as a result and don't fail during
# calculation. Actual values doesn't matter here, though usually it's all
# False in this case
assert isinstance(result, Series)
assert result.dtype == np.bool_
@pytest.mark.parametrize(
"keep, expected",
[
("first", Series([False, False, True, False, True])),
("last", Series([True, True, False, False, False])),
(False, Series([True, True, True, False, True])),
],
)
def test_duplicated_keep(keep, expected):
df = DataFrame({"A": [0, 1, 1, 2, 0], "B": ["a", "b", "b", "c", "a"]})
result = df.duplicated(keep=keep)
tm.assert_series_equal(result, expected)
@pytest.mark.xfail(reason="GH#21720; nan/None falsely considered equal")
@pytest.mark.parametrize(
"keep, expected",
[
("first", Series([False, False, True, False, True])),
("last", Series([True, True, False, False, False])),
(False, Series([True, True, True, False, True])),
],
)
def test_duplicated_nan_none(keep, expected):
df = DataFrame({"C": [np.nan, 3, 3, None, np.nan], "x": 1}, dtype=object)
result = df.duplicated(keep=keep)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("subset", [None, ["A", "B"], "A"])
def test_duplicated_subset(subset, keep):
df = DataFrame(
{
"A": [0, 1, 1, 2, 0],
"B": ["a", "b", "b", "c", "a"],
"C": [np.nan, 3, 3, None, np.nan],
}
)
if subset is None:
subset = list(df.columns)
elif isinstance(subset, str):
# need to have a DataFrame, not a Series
# -> select columns with singleton list, not string
subset = [subset]
expected = df[subset].duplicated(keep=keep)
result = df.duplicated(keep=keep, subset=subset)
tm.assert_series_equal(result, expected)
def test_duplicated_on_empty_frame():
# GH 25184
df = DataFrame(columns=["a", "b"])
dupes = df.duplicated("a")
result = df[dupes]
expected = df.copy()
tm.assert_frame_equal(result, expected)
def test_frame_datetime64_duplicated():
dates = date_range("2010-07-01", end="2010-08-05")
tst = DataFrame({"symbol": "AAA", "date": dates})
result = tst.duplicated(["date", "symbol"])
assert (-result).all()
tst = DataFrame({"date": dates})
result = tst.date.duplicated()
assert (-result).all()