114 lines
3.1 KiB
Python
114 lines
3.1 KiB
Python
|
import re
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas import (
|
||
|
DataFrame,
|
||
|
Series,
|
||
|
date_range,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("subset", ["a", ["a"], ["a", "B"]])
|
||
|
def test_duplicated_with_misspelled_column_name(subset):
|
||
|
# GH 19730
|
||
|
df = DataFrame({"A": [0, 0, 1], "B": [0, 0, 1], "C": [0, 0, 1]})
|
||
|
msg = re.escape("Index(['a'], dtype='object')")
|
||
|
|
||
|
with pytest.raises(KeyError, match=msg):
|
||
|
df.duplicated(subset)
|
||
|
|
||
|
|
||
|
@pytest.mark.slow
|
||
|
def test_duplicated_do_not_fail_on_wide_dataframes():
|
||
|
# gh-21524
|
||
|
# Given the wide dataframe with a lot of columns
|
||
|
# with different (important!) values
|
||
|
data = {f"col_{i:02d}": np.random.randint(0, 1000, 30000) for i in range(100)}
|
||
|
df = DataFrame(data).T
|
||
|
result = df.duplicated()
|
||
|
|
||
|
# Then duplicates produce the bool Series as a result and don't fail during
|
||
|
# calculation. Actual values doesn't matter here, though usually it's all
|
||
|
# False in this case
|
||
|
assert isinstance(result, Series)
|
||
|
assert result.dtype == np.bool_
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"keep, expected",
|
||
|
[
|
||
|
("first", Series([False, False, True, False, True])),
|
||
|
("last", Series([True, True, False, False, False])),
|
||
|
(False, Series([True, True, True, False, True])),
|
||
|
],
|
||
|
)
|
||
|
def test_duplicated_keep(keep, expected):
|
||
|
df = DataFrame({"A": [0, 1, 1, 2, 0], "B": ["a", "b", "b", "c", "a"]})
|
||
|
|
||
|
result = df.duplicated(keep=keep)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.xfail(reason="GH#21720; nan/None falsely considered equal")
|
||
|
@pytest.mark.parametrize(
|
||
|
"keep, expected",
|
||
|
[
|
||
|
("first", Series([False, False, True, False, True])),
|
||
|
("last", Series([True, True, False, False, False])),
|
||
|
(False, Series([True, True, True, False, True])),
|
||
|
],
|
||
|
)
|
||
|
def test_duplicated_nan_none(keep, expected):
|
||
|
df = DataFrame({"C": [np.nan, 3, 3, None, np.nan], "x": 1}, dtype=object)
|
||
|
|
||
|
result = df.duplicated(keep=keep)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("subset", [None, ["A", "B"], "A"])
|
||
|
def test_duplicated_subset(subset, keep):
|
||
|
df = DataFrame(
|
||
|
{
|
||
|
"A": [0, 1, 1, 2, 0],
|
||
|
"B": ["a", "b", "b", "c", "a"],
|
||
|
"C": [np.nan, 3, 3, None, np.nan],
|
||
|
}
|
||
|
)
|
||
|
|
||
|
if subset is None:
|
||
|
subset = list(df.columns)
|
||
|
elif isinstance(subset, str):
|
||
|
# need to have a DataFrame, not a Series
|
||
|
# -> select columns with singleton list, not string
|
||
|
subset = [subset]
|
||
|
|
||
|
expected = df[subset].duplicated(keep=keep)
|
||
|
result = df.duplicated(keep=keep, subset=subset)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_duplicated_on_empty_frame():
|
||
|
# GH 25184
|
||
|
|
||
|
df = DataFrame(columns=["a", "b"])
|
||
|
dupes = df.duplicated("a")
|
||
|
|
||
|
result = df[dupes]
|
||
|
expected = df.copy()
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_frame_datetime64_duplicated():
|
||
|
dates = date_range("2010-07-01", end="2010-08-05")
|
||
|
|
||
|
tst = DataFrame({"symbol": "AAA", "date": dates})
|
||
|
result = tst.duplicated(["date", "symbol"])
|
||
|
assert (-result).all()
|
||
|
|
||
|
tst = DataFrame({"date": dates})
|
||
|
result = tst.date.duplicated()
|
||
|
assert (-result).all()
|