47 lines
1.3 KiB
Python
47 lines
1.3 KiB
Python
"""
|
|
For cython types that cannot be represented precisely, closest-available
|
|
python equivalents are used, and the precise types kept as adjacent comments.
|
|
"""
|
|
from datetime import tzinfo
|
|
|
|
import numpy as np
|
|
|
|
from pandas._libs.tslibs.dtypes import Resolution
|
|
from pandas._libs.tslibs.offsets import BaseOffset
|
|
from pandas._typing import npt
|
|
|
|
def dt64arr_to_periodarr(
|
|
stamps: npt.NDArray[np.int64],
|
|
freq: int,
|
|
tz: tzinfo | None,
|
|
reso: int = ..., # NPY_DATETIMEUNIT
|
|
) -> npt.NDArray[np.int64]: ...
|
|
def is_date_array_normalized(
|
|
stamps: npt.NDArray[np.int64],
|
|
tz: tzinfo | None,
|
|
reso: int, # NPY_DATETIMEUNIT
|
|
) -> bool: ...
|
|
def normalize_i8_timestamps(
|
|
stamps: npt.NDArray[np.int64],
|
|
tz: tzinfo | None,
|
|
reso: int, # NPY_DATETIMEUNIT
|
|
) -> npt.NDArray[np.int64]: ...
|
|
def get_resolution(
|
|
stamps: npt.NDArray[np.int64],
|
|
tz: tzinfo | None = ...,
|
|
reso: int = ..., # NPY_DATETIMEUNIT
|
|
) -> Resolution: ...
|
|
def ints_to_pydatetime(
|
|
arr: npt.NDArray[np.int64],
|
|
tz: tzinfo | None = ...,
|
|
freq: BaseOffset | None = ...,
|
|
fold: bool = ...,
|
|
box: str = ...,
|
|
reso: int = ..., # NPY_DATETIMEUNIT
|
|
) -> npt.NDArray[np.object_]: ...
|
|
def tz_convert_from_utc(
|
|
stamps: npt.NDArray[np.int64],
|
|
tz: tzinfo | None,
|
|
reso: int = ..., # NPY_DATETIMEUNIT
|
|
) -> npt.NDArray[np.int64]: ...
|