""" For cython types that cannot be represented precisely, closest-available python equivalents are used, and the precise types kept as adjacent comments. """ from datetime import tzinfo import numpy as np from pandas._libs.tslibs.dtypes import Resolution from pandas._libs.tslibs.offsets import BaseOffset from pandas._typing import npt def dt64arr_to_periodarr( stamps: npt.NDArray[np.int64], freq: int, tz: tzinfo | None, reso: int = ..., # NPY_DATETIMEUNIT ) -> npt.NDArray[np.int64]: ... def is_date_array_normalized( stamps: npt.NDArray[np.int64], tz: tzinfo | None, reso: int, # NPY_DATETIMEUNIT ) -> bool: ... def normalize_i8_timestamps( stamps: npt.NDArray[np.int64], tz: tzinfo | None, reso: int, # NPY_DATETIMEUNIT ) -> npt.NDArray[np.int64]: ... def get_resolution( stamps: npt.NDArray[np.int64], tz: tzinfo | None = ..., reso: int = ..., # NPY_DATETIMEUNIT ) -> Resolution: ... def ints_to_pydatetime( arr: npt.NDArray[np.int64], tz: tzinfo | None = ..., freq: BaseOffset | None = ..., fold: bool = ..., box: str = ..., reso: int = ..., # NPY_DATETIMEUNIT ) -> npt.NDArray[np.object_]: ... def tz_convert_from_utc( stamps: npt.NDArray[np.int64], tz: tzinfo | None, reso: int = ..., # NPY_DATETIMEUNIT ) -> npt.NDArray[np.int64]: ...