aoc-2022/venv/Lib/site-packages/pandas/tests/series/methods/test_explode.py

145 lines
4.0 KiB
Python
Raw Normal View History

import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
def test_basic():
s = pd.Series([[0, 1, 2], np.nan, [], (3, 4)], index=list("abcd"), name="foo")
result = s.explode()
expected = pd.Series(
[0, 1, 2, np.nan, np.nan, 3, 4], index=list("aaabcdd"), dtype=object, name="foo"
)
tm.assert_series_equal(result, expected)
def test_mixed_type():
s = pd.Series(
[[0, 1, 2], np.nan, None, np.array([]), pd.Series(["a", "b"])], name="foo"
)
result = s.explode()
expected = pd.Series(
[0, 1, 2, np.nan, None, np.nan, "a", "b"],
index=[0, 0, 0, 1, 2, 3, 4, 4],
dtype=object,
name="foo",
)
tm.assert_series_equal(result, expected)
def test_empty():
s = pd.Series(dtype=object)
result = s.explode()
expected = s.copy()
tm.assert_series_equal(result, expected)
def test_nested_lists():
s = pd.Series([[[1, 2, 3]], [1, 2], 1])
result = s.explode()
expected = pd.Series([[1, 2, 3], 1, 2, 1], index=[0, 1, 1, 2])
tm.assert_series_equal(result, expected)
def test_multi_index():
s = pd.Series(
[[0, 1, 2], np.nan, [], (3, 4)],
name="foo",
index=pd.MultiIndex.from_product([list("ab"), range(2)], names=["foo", "bar"]),
)
result = s.explode()
index = pd.MultiIndex.from_tuples(
[("a", 0), ("a", 0), ("a", 0), ("a", 1), ("b", 0), ("b", 1), ("b", 1)],
names=["foo", "bar"],
)
expected = pd.Series(
[0, 1, 2, np.nan, np.nan, 3, 4], index=index, dtype=object, name="foo"
)
tm.assert_series_equal(result, expected)
def test_large():
s = pd.Series([range(256)]).explode()
result = s.explode()
tm.assert_series_equal(result, s)
def test_invert_array():
df = pd.DataFrame({"a": pd.date_range("20190101", periods=3, tz="UTC")})
listify = df.apply(lambda x: x.array, axis=1)
result = listify.explode()
tm.assert_series_equal(result, df["a"].rename())
@pytest.mark.parametrize(
"s", [pd.Series([1, 2, 3]), pd.Series(pd.date_range("2019", periods=3, tz="UTC"))]
)
def non_object_dtype(s):
result = s.explode()
tm.assert_series_equal(result, s)
def test_typical_usecase():
df = pd.DataFrame(
[{"var1": "a,b,c", "var2": 1}, {"var1": "d,e,f", "var2": 2}],
columns=["var1", "var2"],
)
exploded = df.var1.str.split(",").explode()
result = df[["var2"]].join(exploded)
expected = pd.DataFrame(
{"var2": [1, 1, 1, 2, 2, 2], "var1": list("abcdef")},
columns=["var2", "var1"],
index=[0, 0, 0, 1, 1, 1],
)
tm.assert_frame_equal(result, expected)
def test_nested_EA():
# a nested EA array
s = pd.Series(
[
pd.date_range("20170101", periods=3, tz="UTC"),
pd.date_range("20170104", periods=3, tz="UTC"),
]
)
result = s.explode()
expected = pd.Series(
pd.date_range("20170101", periods=6, tz="UTC"), index=[0, 0, 0, 1, 1, 1]
)
tm.assert_series_equal(result, expected)
def test_duplicate_index():
# GH 28005
s = pd.Series([[1, 2], [3, 4]], index=[0, 0])
result = s.explode()
expected = pd.Series([1, 2, 3, 4], index=[0, 0, 0, 0], dtype=object)
tm.assert_series_equal(result, expected)
def test_ignore_index():
# GH 34932
s = pd.Series([[1, 2], [3, 4]])
result = s.explode(ignore_index=True)
expected = pd.Series([1, 2, 3, 4], index=[0, 1, 2, 3], dtype=object)
tm.assert_series_equal(result, expected)
def test_explode_sets():
# https://github.com/pandas-dev/pandas/issues/35614
s = pd.Series([{"a", "b", "c"}], index=[1])
result = s.explode().sort_values()
expected = pd.Series(["a", "b", "c"], index=[1, 1, 1])
tm.assert_series_equal(result, expected)
def test_explode_scalars_can_ignore_index():
# https://github.com/pandas-dev/pandas/issues/40487
s = pd.Series([1, 2, 3], index=["a", "b", "c"])
result = s.explode(ignore_index=True)
expected = pd.Series([1, 2, 3])
tm.assert_series_equal(result, expected)