import numpy as np import pytest import pandas as pd import pandas._testing as tm def test_basic(): s = pd.Series([[0, 1, 2], np.nan, [], (3, 4)], index=list("abcd"), name="foo") result = s.explode() expected = pd.Series( [0, 1, 2, np.nan, np.nan, 3, 4], index=list("aaabcdd"), dtype=object, name="foo" ) tm.assert_series_equal(result, expected) def test_mixed_type(): s = pd.Series( [[0, 1, 2], np.nan, None, np.array([]), pd.Series(["a", "b"])], name="foo" ) result = s.explode() expected = pd.Series( [0, 1, 2, np.nan, None, np.nan, "a", "b"], index=[0, 0, 0, 1, 2, 3, 4, 4], dtype=object, name="foo", ) tm.assert_series_equal(result, expected) def test_empty(): s = pd.Series(dtype=object) result = s.explode() expected = s.copy() tm.assert_series_equal(result, expected) def test_nested_lists(): s = pd.Series([[[1, 2, 3]], [1, 2], 1]) result = s.explode() expected = pd.Series([[1, 2, 3], 1, 2, 1], index=[0, 1, 1, 2]) tm.assert_series_equal(result, expected) def test_multi_index(): s = pd.Series( [[0, 1, 2], np.nan, [], (3, 4)], name="foo", index=pd.MultiIndex.from_product([list("ab"), range(2)], names=["foo", "bar"]), ) result = s.explode() index = pd.MultiIndex.from_tuples( [("a", 0), ("a", 0), ("a", 0), ("a", 1), ("b", 0), ("b", 1), ("b", 1)], names=["foo", "bar"], ) expected = pd.Series( [0, 1, 2, np.nan, np.nan, 3, 4], index=index, dtype=object, name="foo" ) tm.assert_series_equal(result, expected) def test_large(): s = pd.Series([range(256)]).explode() result = s.explode() tm.assert_series_equal(result, s) def test_invert_array(): df = pd.DataFrame({"a": pd.date_range("20190101", periods=3, tz="UTC")}) listify = df.apply(lambda x: x.array, axis=1) result = listify.explode() tm.assert_series_equal(result, df["a"].rename()) @pytest.mark.parametrize( "s", [pd.Series([1, 2, 3]), pd.Series(pd.date_range("2019", periods=3, tz="UTC"))] ) def non_object_dtype(s): result = s.explode() tm.assert_series_equal(result, s) def test_typical_usecase(): df = pd.DataFrame( [{"var1": "a,b,c", "var2": 1}, {"var1": "d,e,f", "var2": 2}], columns=["var1", "var2"], ) exploded = df.var1.str.split(",").explode() result = df[["var2"]].join(exploded) expected = pd.DataFrame( {"var2": [1, 1, 1, 2, 2, 2], "var1": list("abcdef")}, columns=["var2", "var1"], index=[0, 0, 0, 1, 1, 1], ) tm.assert_frame_equal(result, expected) def test_nested_EA(): # a nested EA array s = pd.Series( [ pd.date_range("20170101", periods=3, tz="UTC"), pd.date_range("20170104", periods=3, tz="UTC"), ] ) result = s.explode() expected = pd.Series( pd.date_range("20170101", periods=6, tz="UTC"), index=[0, 0, 0, 1, 1, 1] ) tm.assert_series_equal(result, expected) def test_duplicate_index(): # GH 28005 s = pd.Series([[1, 2], [3, 4]], index=[0, 0]) result = s.explode() expected = pd.Series([1, 2, 3, 4], index=[0, 0, 0, 0], dtype=object) tm.assert_series_equal(result, expected) def test_ignore_index(): # GH 34932 s = pd.Series([[1, 2], [3, 4]]) result = s.explode(ignore_index=True) expected = pd.Series([1, 2, 3, 4], index=[0, 1, 2, 3], dtype=object) tm.assert_series_equal(result, expected) def test_explode_sets(): # https://github.com/pandas-dev/pandas/issues/35614 s = pd.Series([{"a", "b", "c"}], index=[1]) result = s.explode().sort_values() expected = pd.Series(["a", "b", "c"], index=[1, 1, 1]) tm.assert_series_equal(result, expected) def test_explode_scalars_can_ignore_index(): # https://github.com/pandas-dev/pandas/issues/40487 s = pd.Series([1, 2, 3], index=["a", "b", "c"]) result = s.explode(ignore_index=True) expected = pd.Series([1, 2, 3]) tm.assert_series_equal(result, expected)