aoc-2022/venv/Lib/site-packages/pandas/tests/frame/methods/test_fillna.py

809 lines
27 KiB
Python
Raw Normal View History

import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import (
Categorical,
DataFrame,
DatetimeIndex,
NaT,
PeriodIndex,
Series,
TimedeltaIndex,
Timestamp,
date_range,
to_datetime,
)
import pandas._testing as tm
from pandas.tests.frame.common import _check_mixed_float
class TestFillNA:
@td.skip_array_manager_not_yet_implemented
def test_fillna_dict_inplace_nonunique_columns(self, using_copy_on_write):
df = DataFrame(
{"A": [np.nan] * 3, "B": [NaT, Timestamp(1), NaT], "C": [np.nan, "foo", 2]}
)
df.columns = ["A", "A", "A"]
orig = df[:]
df.fillna({"A": 2}, inplace=True)
# The first and third columns can be set inplace, while the second cannot.
expected = DataFrame(
{"A": [2.0] * 3, "B": [2, Timestamp(1), 2], "C": [2, "foo", 2]}
)
expected.columns = ["A", "A", "A"]
tm.assert_frame_equal(df, expected)
# TODO: what's the expected/desired behavior with CoW?
if not using_copy_on_write:
assert tm.shares_memory(df.iloc[:, 0], orig.iloc[:, 0])
assert not tm.shares_memory(df.iloc[:, 1], orig.iloc[:, 1])
if not using_copy_on_write:
assert tm.shares_memory(df.iloc[:, 2], orig.iloc[:, 2])
@td.skip_array_manager_not_yet_implemented
def test_fillna_on_column_view(self, using_copy_on_write):
# GH#46149 avoid unnecessary copies
arr = np.full((40, 50), np.nan)
df = DataFrame(arr)
df[0].fillna(-1, inplace=True)
if using_copy_on_write:
assert np.isnan(arr[:, 0]).all()
else:
assert (arr[:, 0] == -1).all()
# i.e. we didn't create a new 49-column block
assert len(df._mgr.arrays) == 1
assert np.shares_memory(df.values, arr)
def test_fillna_datetime(self, datetime_frame):
tf = datetime_frame
tf.loc[tf.index[:5], "A"] = np.nan
tf.loc[tf.index[-5:], "A"] = np.nan
zero_filled = datetime_frame.fillna(0)
assert (zero_filled.loc[zero_filled.index[:5], "A"] == 0).all()
padded = datetime_frame.fillna(method="pad")
assert np.isnan(padded.loc[padded.index[:5], "A"]).all()
assert (
padded.loc[padded.index[-5:], "A"] == padded.loc[padded.index[-5], "A"]
).all()
msg = "Must specify a fill 'value' or 'method'"
with pytest.raises(ValueError, match=msg):
datetime_frame.fillna()
msg = "Cannot specify both 'value' and 'method'"
with pytest.raises(ValueError, match=msg):
datetime_frame.fillna(5, method="ffill")
def test_fillna_mixed_type(self, float_string_frame):
mf = float_string_frame
mf.loc[mf.index[5:20], "foo"] = np.nan
mf.loc[mf.index[-10:], "A"] = np.nan
# TODO: make stronger assertion here, GH 25640
mf.fillna(value=0)
mf.fillna(method="pad")
def test_fillna_mixed_float(self, mixed_float_frame):
# mixed numeric (but no float16)
mf = mixed_float_frame.reindex(columns=["A", "B", "D"])
mf.loc[mf.index[-10:], "A"] = np.nan
result = mf.fillna(value=0)
_check_mixed_float(result, dtype={"C": None})
result = mf.fillna(method="pad")
_check_mixed_float(result, dtype={"C": None})
def test_fillna_empty(self):
# empty frame (GH#2778)
df = DataFrame(columns=["x"])
for m in ["pad", "backfill"]:
df.x.fillna(method=m, inplace=True)
df.x.fillna(method=m)
def test_fillna_different_dtype(self):
# with different dtype (GH#3386)
df = DataFrame(
[["a", "a", np.nan, "a"], ["b", "b", np.nan, "b"], ["c", "c", np.nan, "c"]]
)
result = df.fillna({2: "foo"})
expected = DataFrame(
[["a", "a", "foo", "a"], ["b", "b", "foo", "b"], ["c", "c", "foo", "c"]]
)
tm.assert_frame_equal(result, expected)
return_value = df.fillna({2: "foo"}, inplace=True)
tm.assert_frame_equal(df, expected)
assert return_value is None
def test_fillna_limit_and_value(self):
# limit and value
df = DataFrame(np.random.randn(10, 3))
df.iloc[2:7, 0] = np.nan
df.iloc[3:5, 2] = np.nan
expected = df.copy()
expected.iloc[2, 0] = 999
expected.iloc[3, 2] = 999
result = df.fillna(999, limit=1)
tm.assert_frame_equal(result, expected)
def test_fillna_datelike(self):
# with datelike
# GH#6344
df = DataFrame(
{
"Date": [NaT, Timestamp("2014-1-1")],
"Date2": [Timestamp("2013-1-1"), NaT],
}
)
expected = df.copy()
expected["Date"] = expected["Date"].fillna(df.loc[df.index[0], "Date2"])
result = df.fillna(value={"Date": df["Date2"]})
tm.assert_frame_equal(result, expected)
def test_fillna_tzaware(self):
# with timezone
# GH#15855
df = DataFrame({"A": [Timestamp("2012-11-11 00:00:00+01:00"), NaT]})
exp = DataFrame(
{
"A": [
Timestamp("2012-11-11 00:00:00+01:00"),
Timestamp("2012-11-11 00:00:00+01:00"),
]
}
)
tm.assert_frame_equal(df.fillna(method="pad"), exp)
df = DataFrame({"A": [NaT, Timestamp("2012-11-11 00:00:00+01:00")]})
exp = DataFrame(
{
"A": [
Timestamp("2012-11-11 00:00:00+01:00"),
Timestamp("2012-11-11 00:00:00+01:00"),
]
}
)
tm.assert_frame_equal(df.fillna(method="bfill"), exp)
def test_fillna_tzaware_different_column(self):
# with timezone in another column
# GH#15522
df = DataFrame(
{
"A": date_range("20130101", periods=4, tz="US/Eastern"),
"B": [1, 2, np.nan, np.nan],
}
)
result = df.fillna(method="pad")
expected = DataFrame(
{
"A": date_range("20130101", periods=4, tz="US/Eastern"),
"B": [1.0, 2.0, 2.0, 2.0],
}
)
tm.assert_frame_equal(result, expected)
def test_na_actions_categorical(self):
cat = Categorical([1, 2, 3, np.nan], categories=[1, 2, 3])
vals = ["a", "b", np.nan, "d"]
df = DataFrame({"cats": cat, "vals": vals})
cat2 = Categorical([1, 2, 3, 3], categories=[1, 2, 3])
vals2 = ["a", "b", "b", "d"]
df_exp_fill = DataFrame({"cats": cat2, "vals": vals2})
cat3 = Categorical([1, 2, 3], categories=[1, 2, 3])
vals3 = ["a", "b", np.nan]
df_exp_drop_cats = DataFrame({"cats": cat3, "vals": vals3})
cat4 = Categorical([1, 2], categories=[1, 2, 3])
vals4 = ["a", "b"]
df_exp_drop_all = DataFrame({"cats": cat4, "vals": vals4})
# fillna
res = df.fillna(value={"cats": 3, "vals": "b"})
tm.assert_frame_equal(res, df_exp_fill)
msg = "Cannot setitem on a Categorical with a new category"
with pytest.raises(TypeError, match=msg):
df.fillna(value={"cats": 4, "vals": "c"})
res = df.fillna(method="pad")
tm.assert_frame_equal(res, df_exp_fill)
# dropna
res = df.dropna(subset=["cats"])
tm.assert_frame_equal(res, df_exp_drop_cats)
res = df.dropna()
tm.assert_frame_equal(res, df_exp_drop_all)
# make sure that fillna takes missing values into account
c = Categorical([np.nan, "b", np.nan], categories=["a", "b"])
df = DataFrame({"cats": c, "vals": [1, 2, 3]})
cat_exp = Categorical(["a", "b", "a"], categories=["a", "b"])
df_exp = DataFrame({"cats": cat_exp, "vals": [1, 2, 3]})
res = df.fillna("a")
tm.assert_frame_equal(res, df_exp)
def test_fillna_categorical_nan(self):
# GH#14021
# np.nan should always be a valid filler
cat = Categorical([np.nan, 2, np.nan])
val = Categorical([np.nan, np.nan, np.nan])
df = DataFrame({"cats": cat, "vals": val})
# GH#32950 df.median() is poorly behaved because there is no
# Categorical.median
median = Series({"cats": 2.0, "vals": np.nan})
res = df.fillna(median)
v_exp = [np.nan, np.nan, np.nan]
df_exp = DataFrame({"cats": [2, 2, 2], "vals": v_exp}, dtype="category")
tm.assert_frame_equal(res, df_exp)
result = df.cats.fillna(np.nan)
tm.assert_series_equal(result, df.cats)
result = df.vals.fillna(np.nan)
tm.assert_series_equal(result, df.vals)
idx = DatetimeIndex(
["2011-01-01 09:00", "2016-01-01 23:45", "2011-01-01 09:00", NaT, NaT]
)
df = DataFrame({"a": Categorical(idx)})
tm.assert_frame_equal(df.fillna(value=NaT), df)
idx = PeriodIndex(["2011-01", "2011-01", "2011-01", NaT, NaT], freq="M")
df = DataFrame({"a": Categorical(idx)})
tm.assert_frame_equal(df.fillna(value=NaT), df)
idx = TimedeltaIndex(["1 days", "2 days", "1 days", NaT, NaT])
df = DataFrame({"a": Categorical(idx)})
tm.assert_frame_equal(df.fillna(value=NaT), df)
def test_fillna_downcast(self):
# GH#15277
# infer int64 from float64
df = DataFrame({"a": [1.0, np.nan]})
result = df.fillna(0, downcast="infer")
expected = DataFrame({"a": [1, 0]})
tm.assert_frame_equal(result, expected)
# infer int64 from float64 when fillna value is a dict
df = DataFrame({"a": [1.0, np.nan]})
result = df.fillna({"a": 0}, downcast="infer")
expected = DataFrame({"a": [1, 0]})
tm.assert_frame_equal(result, expected)
def test_fillna_downcast_false(self, frame_or_series):
# GH#45603 preserve object dtype with downcast=False
obj = frame_or_series([1, 2, 3], dtype="object")
result = obj.fillna("", downcast=False)
tm.assert_equal(result, obj)
def test_fillna_downcast_noop(self, frame_or_series):
# GH#45423
# Two relevant paths:
# 1) not _can_hold_na (e.g. integer)
# 2) _can_hold_na + noop + not can_hold_element
obj = frame_or_series([1, 2, 3], dtype=np.int64)
res = obj.fillna("foo", downcast=np.dtype(np.int32))
expected = obj.astype(np.int32)
tm.assert_equal(res, expected)
obj2 = obj.astype(np.float64)
res2 = obj2.fillna("foo", downcast="infer")
expected2 = obj # get back int64
tm.assert_equal(res2, expected2)
res3 = obj2.fillna("foo", downcast=np.dtype(np.int32))
tm.assert_equal(res3, expected)
@pytest.mark.parametrize("columns", [["A", "A", "B"], ["A", "A"]])
def test_fillna_dictlike_value_duplicate_colnames(self, columns):
# GH#43476
df = DataFrame(np.nan, index=[0, 1], columns=columns)
with tm.assert_produces_warning(None):
result = df.fillna({"A": 0})
expected = df.copy()
expected["A"] = 0.0
tm.assert_frame_equal(result, expected)
def test_fillna_dtype_conversion(self):
# make sure that fillna on an empty frame works
df = DataFrame(index=["A", "B", "C"], columns=[1, 2, 3, 4, 5])
result = df.dtypes
expected = Series([np.dtype("object")] * 5, index=[1, 2, 3, 4, 5])
tm.assert_series_equal(result, expected)
result = df.fillna(1)
expected = DataFrame(1, index=["A", "B", "C"], columns=[1, 2, 3, 4, 5])
tm.assert_frame_equal(result, expected)
# empty block
df = DataFrame(index=range(3), columns=["A", "B"], dtype="float64")
result = df.fillna("nan")
expected = DataFrame("nan", index=range(3), columns=["A", "B"])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("val", ["", 1, np.nan, 1.0])
def test_fillna_dtype_conversion_equiv_replace(self, val):
df = DataFrame({"A": [1, np.nan], "B": [1.0, 2.0]})
expected = df.replace(np.nan, val)
result = df.fillna(val)
tm.assert_frame_equal(result, expected)
def test_fillna_datetime_columns(self):
# GH#7095
df = DataFrame(
{
"A": [-1, -2, np.nan],
"B": date_range("20130101", periods=3),
"C": ["foo", "bar", None],
"D": ["foo2", "bar2", None],
},
index=date_range("20130110", periods=3),
)
result = df.fillna("?")
expected = DataFrame(
{
"A": [-1, -2, "?"],
"B": date_range("20130101", periods=3),
"C": ["foo", "bar", "?"],
"D": ["foo2", "bar2", "?"],
},
index=date_range("20130110", periods=3),
)
tm.assert_frame_equal(result, expected)
df = DataFrame(
{
"A": [-1, -2, np.nan],
"B": [Timestamp("2013-01-01"), Timestamp("2013-01-02"), NaT],
"C": ["foo", "bar", None],
"D": ["foo2", "bar2", None],
},
index=date_range("20130110", periods=3),
)
result = df.fillna("?")
expected = DataFrame(
{
"A": [-1, -2, "?"],
"B": [Timestamp("2013-01-01"), Timestamp("2013-01-02"), "?"],
"C": ["foo", "bar", "?"],
"D": ["foo2", "bar2", "?"],
},
index=date_range("20130110", periods=3),
)
tm.assert_frame_equal(result, expected)
def test_ffill(self, datetime_frame):
datetime_frame["A"][:5] = np.nan
datetime_frame["A"][-5:] = np.nan
tm.assert_frame_equal(
datetime_frame.ffill(), datetime_frame.fillna(method="ffill")
)
def test_ffill_pos_args_deprecation(self):
# https://github.com/pandas-dev/pandas/issues/41485
df = DataFrame({"a": [1, 2, 3]})
msg = (
r"In a future version of pandas all arguments of DataFrame.ffill "
r"will be keyword-only"
)
with tm.assert_produces_warning(FutureWarning, match=msg):
result = df.ffill(0)
expected = DataFrame({"a": [1, 2, 3]})
tm.assert_frame_equal(result, expected)
def test_bfill(self, datetime_frame):
datetime_frame["A"][:5] = np.nan
datetime_frame["A"][-5:] = np.nan
tm.assert_frame_equal(
datetime_frame.bfill(), datetime_frame.fillna(method="bfill")
)
def test_bfill_pos_args_deprecation(self):
# https://github.com/pandas-dev/pandas/issues/41485
df = DataFrame({"a": [1, 2, 3]})
msg = (
r"In a future version of pandas all arguments of DataFrame.bfill "
r"will be keyword-only"
)
with tm.assert_produces_warning(FutureWarning, match=msg):
result = df.bfill(0)
expected = DataFrame({"a": [1, 2, 3]})
tm.assert_frame_equal(result, expected)
def test_frame_pad_backfill_limit(self):
index = np.arange(10)
df = DataFrame(np.random.randn(10, 4), index=index)
result = df[:2].reindex(index, method="pad", limit=5)
expected = df[:2].reindex(index).fillna(method="pad")
expected.iloc[-3:] = np.nan
tm.assert_frame_equal(result, expected)
result = df[-2:].reindex(index, method="backfill", limit=5)
expected = df[-2:].reindex(index).fillna(method="backfill")
expected.iloc[:3] = np.nan
tm.assert_frame_equal(result, expected)
def test_frame_fillna_limit(self):
index = np.arange(10)
df = DataFrame(np.random.randn(10, 4), index=index)
result = df[:2].reindex(index)
result = result.fillna(method="pad", limit=5)
expected = df[:2].reindex(index).fillna(method="pad")
expected.iloc[-3:] = np.nan
tm.assert_frame_equal(result, expected)
result = df[-2:].reindex(index)
result = result.fillna(method="backfill", limit=5)
expected = df[-2:].reindex(index).fillna(method="backfill")
expected.iloc[:3] = np.nan
tm.assert_frame_equal(result, expected)
def test_fillna_skip_certain_blocks(self):
# don't try to fill boolean, int blocks
df = DataFrame(np.random.randn(10, 4).astype(int))
# it works!
df.fillna(np.nan)
@pytest.mark.parametrize("type", [int, float])
def test_fillna_positive_limit(self, type):
df = DataFrame(np.random.randn(10, 4)).astype(type)
msg = "Limit must be greater than 0"
with pytest.raises(ValueError, match=msg):
df.fillna(0, limit=-5)
@pytest.mark.parametrize("type", [int, float])
def test_fillna_integer_limit(self, type):
df = DataFrame(np.random.randn(10, 4)).astype(type)
msg = "Limit must be an integer"
with pytest.raises(ValueError, match=msg):
df.fillna(0, limit=0.5)
def test_fillna_inplace(self):
df = DataFrame(np.random.randn(10, 4))
df[1][:4] = np.nan
df[3][-4:] = np.nan
expected = df.fillna(value=0)
assert expected is not df
df.fillna(value=0, inplace=True)
tm.assert_frame_equal(df, expected)
expected = df.fillna(value={0: 0}, inplace=True)
assert expected is None
df[1][:4] = np.nan
df[3][-4:] = np.nan
expected = df.fillna(method="ffill")
assert expected is not df
df.fillna(method="ffill", inplace=True)
tm.assert_frame_equal(df, expected)
def test_fillna_dict_series(self):
df = DataFrame(
{
"a": [np.nan, 1, 2, np.nan, np.nan],
"b": [1, 2, 3, np.nan, np.nan],
"c": [np.nan, 1, 2, 3, 4],
}
)
result = df.fillna({"a": 0, "b": 5})
expected = df.copy()
expected["a"] = expected["a"].fillna(0)
expected["b"] = expected["b"].fillna(5)
tm.assert_frame_equal(result, expected)
# it works
result = df.fillna({"a": 0, "b": 5, "d": 7})
# Series treated same as dict
result = df.fillna(df.max())
expected = df.fillna(df.max().to_dict())
tm.assert_frame_equal(result, expected)
# disable this for now
with pytest.raises(NotImplementedError, match="column by column"):
df.fillna(df.max(1), axis=1)
def test_fillna_dataframe(self):
# GH#8377
df = DataFrame(
{
"a": [np.nan, 1, 2, np.nan, np.nan],
"b": [1, 2, 3, np.nan, np.nan],
"c": [np.nan, 1, 2, 3, 4],
},
index=list("VWXYZ"),
)
# df2 may have different index and columns
df2 = DataFrame(
{
"a": [np.nan, 10, 20, 30, 40],
"b": [50, 60, 70, 80, 90],
"foo": ["bar"] * 5,
},
index=list("VWXuZ"),
)
result = df.fillna(df2)
# only those columns and indices which are shared get filled
expected = DataFrame(
{
"a": [np.nan, 1, 2, np.nan, 40],
"b": [1, 2, 3, np.nan, 90],
"c": [np.nan, 1, 2, 3, 4],
},
index=list("VWXYZ"),
)
tm.assert_frame_equal(result, expected)
def test_fillna_columns(self):
df = DataFrame(np.random.randn(10, 10))
df.values[:, ::2] = np.nan
result = df.fillna(method="ffill", axis=1)
expected = df.T.fillna(method="pad").T
tm.assert_frame_equal(result, expected)
df.insert(6, "foo", 5)
result = df.fillna(method="ffill", axis=1)
expected = df.astype(float).fillna(method="ffill", axis=1)
tm.assert_frame_equal(result, expected)
def test_fillna_invalid_method(self, float_frame):
with pytest.raises(ValueError, match="ffil"):
float_frame.fillna(method="ffil")
def test_fillna_invalid_value(self, float_frame):
# list
msg = '"value" parameter must be a scalar or dict, but you passed a "{}"'
with pytest.raises(TypeError, match=msg.format("list")):
float_frame.fillna([1, 2])
# tuple
with pytest.raises(TypeError, match=msg.format("tuple")):
float_frame.fillna((1, 2))
# frame with series
msg = (
'"value" parameter must be a scalar, dict or Series, but you '
'passed a "DataFrame"'
)
with pytest.raises(TypeError, match=msg):
float_frame.iloc[:, 0].fillna(float_frame)
def test_fillna_col_reordering(self):
cols = ["COL." + str(i) for i in range(5, 0, -1)]
data = np.random.rand(20, 5)
df = DataFrame(index=range(20), columns=cols, data=data)
filled = df.fillna(method="ffill")
assert df.columns.tolist() == filled.columns.tolist()
def test_fill_corner(self, float_frame, float_string_frame):
mf = float_string_frame
mf.loc[mf.index[5:20], "foo"] = np.nan
mf.loc[mf.index[-10:], "A"] = np.nan
filled = float_string_frame.fillna(value=0)
assert (filled.loc[filled.index[5:20], "foo"] == 0).all()
del float_string_frame["foo"]
empty_float = float_frame.reindex(columns=[])
# TODO(wesm): unused?
result = empty_float.fillna(value=0) # noqa
def test_fillna_downcast_dict(self):
# GH#40809
df = DataFrame({"col1": [1, np.nan]})
result = df.fillna({"col1": 2}, downcast={"col1": "int64"})
expected = DataFrame({"col1": [1, 2]})
tm.assert_frame_equal(result, expected)
def test_fillna_pos_args_deprecation(self):
# https://github.com/pandas-dev/pandas/issues/41485
df = DataFrame({"a": [1, 2, 3, np.nan]}, dtype=float)
msg = (
r"In a future version of pandas all arguments of DataFrame.fillna "
r"except for the argument 'value' will be keyword-only"
)
with tm.assert_produces_warning(FutureWarning, match=msg):
result = df.fillna(0, None, None)
expected = DataFrame({"a": [1, 2, 3, 0]}, dtype=float)
tm.assert_frame_equal(result, expected)
def test_fillna_with_columns_and_limit(self):
# GH40989
df = DataFrame(
[
[np.nan, 2, np.nan, 0],
[3, 4, np.nan, 1],
[np.nan, np.nan, np.nan, 5],
[np.nan, 3, np.nan, 4],
],
columns=list("ABCD"),
)
result = df.fillna(axis=1, value=100, limit=1)
result2 = df.fillna(axis=1, value=100, limit=2)
expected = DataFrame(
{
"A": Series([100, 3, 100, 100], dtype="float64"),
"B": [2, 4, np.nan, 3],
"C": [np.nan, 100, np.nan, np.nan],
"D": Series([0, 1, 5, 4], dtype="float64"),
},
index=[0, 1, 2, 3],
)
expected2 = DataFrame(
{
"A": Series([100, 3, 100, 100], dtype="float64"),
"B": Series([2, 4, 100, 3], dtype="float64"),
"C": [100, 100, np.nan, 100],
"D": Series([0, 1, 5, 4], dtype="float64"),
},
index=[0, 1, 2, 3],
)
tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(result2, expected2)
def test_fillna_datetime_inplace(self):
# GH#48863
df = DataFrame(
{
"date1": to_datetime(["2018-05-30", None]),
"date2": to_datetime(["2018-09-30", None]),
}
)
expected = df.copy()
df.fillna(np.nan, inplace=True)
tm.assert_frame_equal(df, expected)
def test_fillna_inplace_with_columns_limit_and_value(self):
# GH40989
df = DataFrame(
[
[np.nan, 2, np.nan, 0],
[3, 4, np.nan, 1],
[np.nan, np.nan, np.nan, 5],
[np.nan, 3, np.nan, 4],
],
columns=list("ABCD"),
)
expected = df.fillna(axis=1, value=100, limit=1)
assert expected is not df
df.fillna(axis=1, value=100, limit=1, inplace=True)
tm.assert_frame_equal(df, expected)
@td.skip_array_manager_invalid_test
@pytest.mark.parametrize("val", [-1, {"x": -1, "y": -1}])
def test_inplace_dict_update_view(self, val, using_copy_on_write):
# GH#47188
df = DataFrame({"x": [np.nan, 2], "y": [np.nan, 2]})
df_orig = df.copy()
result_view = df[:]
df.fillna(val, inplace=True)
expected = DataFrame({"x": [-1, 2.0], "y": [-1.0, 2]})
tm.assert_frame_equal(df, expected)
if using_copy_on_write:
tm.assert_frame_equal(result_view, df_orig)
else:
tm.assert_frame_equal(result_view, expected)
def test_single_block_df_with_horizontal_axis(self):
# GH 47713
df = DataFrame(
{
"col1": [5, 0, np.nan, 10, np.nan],
"col2": [7, np.nan, np.nan, 5, 3],
"col3": [12, np.nan, 1, 2, 0],
"col4": [np.nan, 1, 1, np.nan, 18],
}
)
result = df.fillna(50, limit=1, axis=1)
expected = DataFrame(
[
[5.0, 7.0, 12.0, 50.0],
[0.0, 50.0, np.nan, 1.0],
[50.0, np.nan, 1.0, 1.0],
[10.0, 5.0, 2.0, 50.0],
[50.0, 3.0, 0.0, 18.0],
],
columns=["col1", "col2", "col3", "col4"],
)
tm.assert_frame_equal(result, expected)
def test_fillna_with_multi_index_frame(self):
# GH 47649
pdf = DataFrame(
{
("x", "a"): [np.nan, 2.0, 3.0],
("x", "b"): [1.0, 2.0, np.nan],
("y", "c"): [1.0, 2.0, np.nan],
}
)
expected = DataFrame(
{
("x", "a"): [-1.0, 2.0, 3.0],
("x", "b"): [1.0, 2.0, -1.0],
("y", "c"): [1.0, 2.0, np.nan],
}
)
tm.assert_frame_equal(pdf.fillna({"x": -1}), expected)
tm.assert_frame_equal(pdf.fillna({"x": -1, ("x", "b"): -2}), expected)
expected = DataFrame(
{
("x", "a"): [-1.0, 2.0, 3.0],
("x", "b"): [1.0, 2.0, -2.0],
("y", "c"): [1.0, 2.0, np.nan],
}
)
tm.assert_frame_equal(pdf.fillna({("x", "b"): -2, "x": -1}), expected)
def test_fillna_nonconsolidated_frame():
# https://github.com/pandas-dev/pandas/issues/36495
df = DataFrame(
[
[1, 1, 1, 1.0],
[2, 2, 2, 2.0],
[3, 3, 3, 3.0],
],
columns=["i1", "i2", "i3", "f1"],
)
df_nonconsol = df.pivot(index="i1", columns="i2")
result = df_nonconsol.fillna(0)
assert result.isna().sum().sum() == 0
def test_fillna_nones_inplace():
# GH 48480
df = DataFrame(
[[None, None], [None, None]],
columns=["A", "B"],
)
with tm.assert_produces_warning(False):
df.fillna(value={"A": 1, "B": 2}, inplace=True)
expected = DataFrame([[1, 2], [1, 2]], columns=["A", "B"])
tm.assert_frame_equal(df, expected)