import numpy as np import pytest import pandas.util._test_decorators as td from pandas import ( Categorical, DataFrame, DatetimeIndex, NaT, PeriodIndex, Series, TimedeltaIndex, Timestamp, date_range, to_datetime, ) import pandas._testing as tm from pandas.tests.frame.common import _check_mixed_float class TestFillNA: @td.skip_array_manager_not_yet_implemented def test_fillna_dict_inplace_nonunique_columns(self, using_copy_on_write): df = DataFrame( {"A": [np.nan] * 3, "B": [NaT, Timestamp(1), NaT], "C": [np.nan, "foo", 2]} ) df.columns = ["A", "A", "A"] orig = df[:] df.fillna({"A": 2}, inplace=True) # The first and third columns can be set inplace, while the second cannot. expected = DataFrame( {"A": [2.0] * 3, "B": [2, Timestamp(1), 2], "C": [2, "foo", 2]} ) expected.columns = ["A", "A", "A"] tm.assert_frame_equal(df, expected) # TODO: what's the expected/desired behavior with CoW? if not using_copy_on_write: assert tm.shares_memory(df.iloc[:, 0], orig.iloc[:, 0]) assert not tm.shares_memory(df.iloc[:, 1], orig.iloc[:, 1]) if not using_copy_on_write: assert tm.shares_memory(df.iloc[:, 2], orig.iloc[:, 2]) @td.skip_array_manager_not_yet_implemented def test_fillna_on_column_view(self, using_copy_on_write): # GH#46149 avoid unnecessary copies arr = np.full((40, 50), np.nan) df = DataFrame(arr) df[0].fillna(-1, inplace=True) if using_copy_on_write: assert np.isnan(arr[:, 0]).all() else: assert (arr[:, 0] == -1).all() # i.e. we didn't create a new 49-column block assert len(df._mgr.arrays) == 1 assert np.shares_memory(df.values, arr) def test_fillna_datetime(self, datetime_frame): tf = datetime_frame tf.loc[tf.index[:5], "A"] = np.nan tf.loc[tf.index[-5:], "A"] = np.nan zero_filled = datetime_frame.fillna(0) assert (zero_filled.loc[zero_filled.index[:5], "A"] == 0).all() padded = datetime_frame.fillna(method="pad") assert np.isnan(padded.loc[padded.index[:5], "A"]).all() assert ( padded.loc[padded.index[-5:], "A"] == padded.loc[padded.index[-5], "A"] ).all() msg = "Must specify a fill 'value' or 'method'" with pytest.raises(ValueError, match=msg): datetime_frame.fillna() msg = "Cannot specify both 'value' and 'method'" with pytest.raises(ValueError, match=msg): datetime_frame.fillna(5, method="ffill") def test_fillna_mixed_type(self, float_string_frame): mf = float_string_frame mf.loc[mf.index[5:20], "foo"] = np.nan mf.loc[mf.index[-10:], "A"] = np.nan # TODO: make stronger assertion here, GH 25640 mf.fillna(value=0) mf.fillna(method="pad") def test_fillna_mixed_float(self, mixed_float_frame): # mixed numeric (but no float16) mf = mixed_float_frame.reindex(columns=["A", "B", "D"]) mf.loc[mf.index[-10:], "A"] = np.nan result = mf.fillna(value=0) _check_mixed_float(result, dtype={"C": None}) result = mf.fillna(method="pad") _check_mixed_float(result, dtype={"C": None}) def test_fillna_empty(self): # empty frame (GH#2778) df = DataFrame(columns=["x"]) for m in ["pad", "backfill"]: df.x.fillna(method=m, inplace=True) df.x.fillna(method=m) def test_fillna_different_dtype(self): # with different dtype (GH#3386) df = DataFrame( [["a", "a", np.nan, "a"], ["b", "b", np.nan, "b"], ["c", "c", np.nan, "c"]] ) result = df.fillna({2: "foo"}) expected = DataFrame( [["a", "a", "foo", "a"], ["b", "b", "foo", "b"], ["c", "c", "foo", "c"]] ) tm.assert_frame_equal(result, expected) return_value = df.fillna({2: "foo"}, inplace=True) tm.assert_frame_equal(df, expected) assert return_value is None def test_fillna_limit_and_value(self): # limit and value df = DataFrame(np.random.randn(10, 3)) df.iloc[2:7, 0] = np.nan df.iloc[3:5, 2] = np.nan expected = df.copy() expected.iloc[2, 0] = 999 expected.iloc[3, 2] = 999 result = df.fillna(999, limit=1) tm.assert_frame_equal(result, expected) def test_fillna_datelike(self): # with datelike # GH#6344 df = DataFrame( { "Date": [NaT, Timestamp("2014-1-1")], "Date2": [Timestamp("2013-1-1"), NaT], } ) expected = df.copy() expected["Date"] = expected["Date"].fillna(df.loc[df.index[0], "Date2"]) result = df.fillna(value={"Date": df["Date2"]}) tm.assert_frame_equal(result, expected) def test_fillna_tzaware(self): # with timezone # GH#15855 df = DataFrame({"A": [Timestamp("2012-11-11 00:00:00+01:00"), NaT]}) exp = DataFrame( { "A": [ Timestamp("2012-11-11 00:00:00+01:00"), Timestamp("2012-11-11 00:00:00+01:00"), ] } ) tm.assert_frame_equal(df.fillna(method="pad"), exp) df = DataFrame({"A": [NaT, Timestamp("2012-11-11 00:00:00+01:00")]}) exp = DataFrame( { "A": [ Timestamp("2012-11-11 00:00:00+01:00"), Timestamp("2012-11-11 00:00:00+01:00"), ] } ) tm.assert_frame_equal(df.fillna(method="bfill"), exp) def test_fillna_tzaware_different_column(self): # with timezone in another column # GH#15522 df = DataFrame( { "A": date_range("20130101", periods=4, tz="US/Eastern"), "B": [1, 2, np.nan, np.nan], } ) result = df.fillna(method="pad") expected = DataFrame( { "A": date_range("20130101", periods=4, tz="US/Eastern"), "B": [1.0, 2.0, 2.0, 2.0], } ) tm.assert_frame_equal(result, expected) def test_na_actions_categorical(self): cat = Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) vals = ["a", "b", np.nan, "d"] df = DataFrame({"cats": cat, "vals": vals}) cat2 = Categorical([1, 2, 3, 3], categories=[1, 2, 3]) vals2 = ["a", "b", "b", "d"] df_exp_fill = DataFrame({"cats": cat2, "vals": vals2}) cat3 = Categorical([1, 2, 3], categories=[1, 2, 3]) vals3 = ["a", "b", np.nan] df_exp_drop_cats = DataFrame({"cats": cat3, "vals": vals3}) cat4 = Categorical([1, 2], categories=[1, 2, 3]) vals4 = ["a", "b"] df_exp_drop_all = DataFrame({"cats": cat4, "vals": vals4}) # fillna res = df.fillna(value={"cats": 3, "vals": "b"}) tm.assert_frame_equal(res, df_exp_fill) msg = "Cannot setitem on a Categorical with a new category" with pytest.raises(TypeError, match=msg): df.fillna(value={"cats": 4, "vals": "c"}) res = df.fillna(method="pad") tm.assert_frame_equal(res, df_exp_fill) # dropna res = df.dropna(subset=["cats"]) tm.assert_frame_equal(res, df_exp_drop_cats) res = df.dropna() tm.assert_frame_equal(res, df_exp_drop_all) # make sure that fillna takes missing values into account c = Categorical([np.nan, "b", np.nan], categories=["a", "b"]) df = DataFrame({"cats": c, "vals": [1, 2, 3]}) cat_exp = Categorical(["a", "b", "a"], categories=["a", "b"]) df_exp = DataFrame({"cats": cat_exp, "vals": [1, 2, 3]}) res = df.fillna("a") tm.assert_frame_equal(res, df_exp) def test_fillna_categorical_nan(self): # GH#14021 # np.nan should always be a valid filler cat = Categorical([np.nan, 2, np.nan]) val = Categorical([np.nan, np.nan, np.nan]) df = DataFrame({"cats": cat, "vals": val}) # GH#32950 df.median() is poorly behaved because there is no # Categorical.median median = Series({"cats": 2.0, "vals": np.nan}) res = df.fillna(median) v_exp = [np.nan, np.nan, np.nan] df_exp = DataFrame({"cats": [2, 2, 2], "vals": v_exp}, dtype="category") tm.assert_frame_equal(res, df_exp) result = df.cats.fillna(np.nan) tm.assert_series_equal(result, df.cats) result = df.vals.fillna(np.nan) tm.assert_series_equal(result, df.vals) idx = DatetimeIndex( ["2011-01-01 09:00", "2016-01-01 23:45", "2011-01-01 09:00", NaT, NaT] ) df = DataFrame({"a": Categorical(idx)}) tm.assert_frame_equal(df.fillna(value=NaT), df) idx = PeriodIndex(["2011-01", "2011-01", "2011-01", NaT, NaT], freq="M") df = DataFrame({"a": Categorical(idx)}) tm.assert_frame_equal(df.fillna(value=NaT), df) idx = TimedeltaIndex(["1 days", "2 days", "1 days", NaT, NaT]) df = DataFrame({"a": Categorical(idx)}) tm.assert_frame_equal(df.fillna(value=NaT), df) def test_fillna_downcast(self): # GH#15277 # infer int64 from float64 df = DataFrame({"a": [1.0, np.nan]}) result = df.fillna(0, downcast="infer") expected = DataFrame({"a": [1, 0]}) tm.assert_frame_equal(result, expected) # infer int64 from float64 when fillna value is a dict df = DataFrame({"a": [1.0, np.nan]}) result = df.fillna({"a": 0}, downcast="infer") expected = DataFrame({"a": [1, 0]}) tm.assert_frame_equal(result, expected) def test_fillna_downcast_false(self, frame_or_series): # GH#45603 preserve object dtype with downcast=False obj = frame_or_series([1, 2, 3], dtype="object") result = obj.fillna("", downcast=False) tm.assert_equal(result, obj) def test_fillna_downcast_noop(self, frame_or_series): # GH#45423 # Two relevant paths: # 1) not _can_hold_na (e.g. integer) # 2) _can_hold_na + noop + not can_hold_element obj = frame_or_series([1, 2, 3], dtype=np.int64) res = obj.fillna("foo", downcast=np.dtype(np.int32)) expected = obj.astype(np.int32) tm.assert_equal(res, expected) obj2 = obj.astype(np.float64) res2 = obj2.fillna("foo", downcast="infer") expected2 = obj # get back int64 tm.assert_equal(res2, expected2) res3 = obj2.fillna("foo", downcast=np.dtype(np.int32)) tm.assert_equal(res3, expected) @pytest.mark.parametrize("columns", [["A", "A", "B"], ["A", "A"]]) def test_fillna_dictlike_value_duplicate_colnames(self, columns): # GH#43476 df = DataFrame(np.nan, index=[0, 1], columns=columns) with tm.assert_produces_warning(None): result = df.fillna({"A": 0}) expected = df.copy() expected["A"] = 0.0 tm.assert_frame_equal(result, expected) def test_fillna_dtype_conversion(self): # make sure that fillna on an empty frame works df = DataFrame(index=["A", "B", "C"], columns=[1, 2, 3, 4, 5]) result = df.dtypes expected = Series([np.dtype("object")] * 5, index=[1, 2, 3, 4, 5]) tm.assert_series_equal(result, expected) result = df.fillna(1) expected = DataFrame(1, index=["A", "B", "C"], columns=[1, 2, 3, 4, 5]) tm.assert_frame_equal(result, expected) # empty block df = DataFrame(index=range(3), columns=["A", "B"], dtype="float64") result = df.fillna("nan") expected = DataFrame("nan", index=range(3), columns=["A", "B"]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("val", ["", 1, np.nan, 1.0]) def test_fillna_dtype_conversion_equiv_replace(self, val): df = DataFrame({"A": [1, np.nan], "B": [1.0, 2.0]}) expected = df.replace(np.nan, val) result = df.fillna(val) tm.assert_frame_equal(result, expected) def test_fillna_datetime_columns(self): # GH#7095 df = DataFrame( { "A": [-1, -2, np.nan], "B": date_range("20130101", periods=3), "C": ["foo", "bar", None], "D": ["foo2", "bar2", None], }, index=date_range("20130110", periods=3), ) result = df.fillna("?") expected = DataFrame( { "A": [-1, -2, "?"], "B": date_range("20130101", periods=3), "C": ["foo", "bar", "?"], "D": ["foo2", "bar2", "?"], }, index=date_range("20130110", periods=3), ) tm.assert_frame_equal(result, expected) df = DataFrame( { "A": [-1, -2, np.nan], "B": [Timestamp("2013-01-01"), Timestamp("2013-01-02"), NaT], "C": ["foo", "bar", None], "D": ["foo2", "bar2", None], }, index=date_range("20130110", periods=3), ) result = df.fillna("?") expected = DataFrame( { "A": [-1, -2, "?"], "B": [Timestamp("2013-01-01"), Timestamp("2013-01-02"), "?"], "C": ["foo", "bar", "?"], "D": ["foo2", "bar2", "?"], }, index=date_range("20130110", periods=3), ) tm.assert_frame_equal(result, expected) def test_ffill(self, datetime_frame): datetime_frame["A"][:5] = np.nan datetime_frame["A"][-5:] = np.nan tm.assert_frame_equal( datetime_frame.ffill(), datetime_frame.fillna(method="ffill") ) def test_ffill_pos_args_deprecation(self): # https://github.com/pandas-dev/pandas/issues/41485 df = DataFrame({"a": [1, 2, 3]}) msg = ( r"In a future version of pandas all arguments of DataFrame.ffill " r"will be keyword-only" ) with tm.assert_produces_warning(FutureWarning, match=msg): result = df.ffill(0) expected = DataFrame({"a": [1, 2, 3]}) tm.assert_frame_equal(result, expected) def test_bfill(self, datetime_frame): datetime_frame["A"][:5] = np.nan datetime_frame["A"][-5:] = np.nan tm.assert_frame_equal( datetime_frame.bfill(), datetime_frame.fillna(method="bfill") ) def test_bfill_pos_args_deprecation(self): # https://github.com/pandas-dev/pandas/issues/41485 df = DataFrame({"a": [1, 2, 3]}) msg = ( r"In a future version of pandas all arguments of DataFrame.bfill " r"will be keyword-only" ) with tm.assert_produces_warning(FutureWarning, match=msg): result = df.bfill(0) expected = DataFrame({"a": [1, 2, 3]}) tm.assert_frame_equal(result, expected) def test_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index, method="pad", limit=5) expected = df[:2].reindex(index).fillna(method="pad") expected.iloc[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index, method="backfill", limit=5) expected = df[-2:].reindex(index).fillna(method="backfill") expected.iloc[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index) result = result.fillna(method="pad", limit=5) expected = df[:2].reindex(index).fillna(method="pad") expected.iloc[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index) result = result.fillna(method="backfill", limit=5) expected = df[-2:].reindex(index).fillna(method="backfill") expected.iloc[:3] = np.nan tm.assert_frame_equal(result, expected) def test_fillna_skip_certain_blocks(self): # don't try to fill boolean, int blocks df = DataFrame(np.random.randn(10, 4).astype(int)) # it works! df.fillna(np.nan) @pytest.mark.parametrize("type", [int, float]) def test_fillna_positive_limit(self, type): df = DataFrame(np.random.randn(10, 4)).astype(type) msg = "Limit must be greater than 0" with pytest.raises(ValueError, match=msg): df.fillna(0, limit=-5) @pytest.mark.parametrize("type", [int, float]) def test_fillna_integer_limit(self, type): df = DataFrame(np.random.randn(10, 4)).astype(type) msg = "Limit must be an integer" with pytest.raises(ValueError, match=msg): df.fillna(0, limit=0.5) def test_fillna_inplace(self): df = DataFrame(np.random.randn(10, 4)) df[1][:4] = np.nan df[3][-4:] = np.nan expected = df.fillna(value=0) assert expected is not df df.fillna(value=0, inplace=True) tm.assert_frame_equal(df, expected) expected = df.fillna(value={0: 0}, inplace=True) assert expected is None df[1][:4] = np.nan df[3][-4:] = np.nan expected = df.fillna(method="ffill") assert expected is not df df.fillna(method="ffill", inplace=True) tm.assert_frame_equal(df, expected) def test_fillna_dict_series(self): df = DataFrame( { "a": [np.nan, 1, 2, np.nan, np.nan], "b": [1, 2, 3, np.nan, np.nan], "c": [np.nan, 1, 2, 3, 4], } ) result = df.fillna({"a": 0, "b": 5}) expected = df.copy() expected["a"] = expected["a"].fillna(0) expected["b"] = expected["b"].fillna(5) tm.assert_frame_equal(result, expected) # it works result = df.fillna({"a": 0, "b": 5, "d": 7}) # Series treated same as dict result = df.fillna(df.max()) expected = df.fillna(df.max().to_dict()) tm.assert_frame_equal(result, expected) # disable this for now with pytest.raises(NotImplementedError, match="column by column"): df.fillna(df.max(1), axis=1) def test_fillna_dataframe(self): # GH#8377 df = DataFrame( { "a": [np.nan, 1, 2, np.nan, np.nan], "b": [1, 2, 3, np.nan, np.nan], "c": [np.nan, 1, 2, 3, 4], }, index=list("VWXYZ"), ) # df2 may have different index and columns df2 = DataFrame( { "a": [np.nan, 10, 20, 30, 40], "b": [50, 60, 70, 80, 90], "foo": ["bar"] * 5, }, index=list("VWXuZ"), ) result = df.fillna(df2) # only those columns and indices which are shared get filled expected = DataFrame( { "a": [np.nan, 1, 2, np.nan, 40], "b": [1, 2, 3, np.nan, 90], "c": [np.nan, 1, 2, 3, 4], }, index=list("VWXYZ"), ) tm.assert_frame_equal(result, expected) def test_fillna_columns(self): df = DataFrame(np.random.randn(10, 10)) df.values[:, ::2] = np.nan result = df.fillna(method="ffill", axis=1) expected = df.T.fillna(method="pad").T tm.assert_frame_equal(result, expected) df.insert(6, "foo", 5) result = df.fillna(method="ffill", axis=1) expected = df.astype(float).fillna(method="ffill", axis=1) tm.assert_frame_equal(result, expected) def test_fillna_invalid_method(self, float_frame): with pytest.raises(ValueError, match="ffil"): float_frame.fillna(method="ffil") def test_fillna_invalid_value(self, float_frame): # list msg = '"value" parameter must be a scalar or dict, but you passed a "{}"' with pytest.raises(TypeError, match=msg.format("list")): float_frame.fillna([1, 2]) # tuple with pytest.raises(TypeError, match=msg.format("tuple")): float_frame.fillna((1, 2)) # frame with series msg = ( '"value" parameter must be a scalar, dict or Series, but you ' 'passed a "DataFrame"' ) with pytest.raises(TypeError, match=msg): float_frame.iloc[:, 0].fillna(float_frame) def test_fillna_col_reordering(self): cols = ["COL." + str(i) for i in range(5, 0, -1)] data = np.random.rand(20, 5) df = DataFrame(index=range(20), columns=cols, data=data) filled = df.fillna(method="ffill") assert df.columns.tolist() == filled.columns.tolist() def test_fill_corner(self, float_frame, float_string_frame): mf = float_string_frame mf.loc[mf.index[5:20], "foo"] = np.nan mf.loc[mf.index[-10:], "A"] = np.nan filled = float_string_frame.fillna(value=0) assert (filled.loc[filled.index[5:20], "foo"] == 0).all() del float_string_frame["foo"] empty_float = float_frame.reindex(columns=[]) # TODO(wesm): unused? result = empty_float.fillna(value=0) # noqa def test_fillna_downcast_dict(self): # GH#40809 df = DataFrame({"col1": [1, np.nan]}) result = df.fillna({"col1": 2}, downcast={"col1": "int64"}) expected = DataFrame({"col1": [1, 2]}) tm.assert_frame_equal(result, expected) def test_fillna_pos_args_deprecation(self): # https://github.com/pandas-dev/pandas/issues/41485 df = DataFrame({"a": [1, 2, 3, np.nan]}, dtype=float) msg = ( r"In a future version of pandas all arguments of DataFrame.fillna " r"except for the argument 'value' will be keyword-only" ) with tm.assert_produces_warning(FutureWarning, match=msg): result = df.fillna(0, None, None) expected = DataFrame({"a": [1, 2, 3, 0]}, dtype=float) tm.assert_frame_equal(result, expected) def test_fillna_with_columns_and_limit(self): # GH40989 df = DataFrame( [ [np.nan, 2, np.nan, 0], [3, 4, np.nan, 1], [np.nan, np.nan, np.nan, 5], [np.nan, 3, np.nan, 4], ], columns=list("ABCD"), ) result = df.fillna(axis=1, value=100, limit=1) result2 = df.fillna(axis=1, value=100, limit=2) expected = DataFrame( { "A": Series([100, 3, 100, 100], dtype="float64"), "B": [2, 4, np.nan, 3], "C": [np.nan, 100, np.nan, np.nan], "D": Series([0, 1, 5, 4], dtype="float64"), }, index=[0, 1, 2, 3], ) expected2 = DataFrame( { "A": Series([100, 3, 100, 100], dtype="float64"), "B": Series([2, 4, 100, 3], dtype="float64"), "C": [100, 100, np.nan, 100], "D": Series([0, 1, 5, 4], dtype="float64"), }, index=[0, 1, 2, 3], ) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected2) def test_fillna_datetime_inplace(self): # GH#48863 df = DataFrame( { "date1": to_datetime(["2018-05-30", None]), "date2": to_datetime(["2018-09-30", None]), } ) expected = df.copy() df.fillna(np.nan, inplace=True) tm.assert_frame_equal(df, expected) def test_fillna_inplace_with_columns_limit_and_value(self): # GH40989 df = DataFrame( [ [np.nan, 2, np.nan, 0], [3, 4, np.nan, 1], [np.nan, np.nan, np.nan, 5], [np.nan, 3, np.nan, 4], ], columns=list("ABCD"), ) expected = df.fillna(axis=1, value=100, limit=1) assert expected is not df df.fillna(axis=1, value=100, limit=1, inplace=True) tm.assert_frame_equal(df, expected) @td.skip_array_manager_invalid_test @pytest.mark.parametrize("val", [-1, {"x": -1, "y": -1}]) def test_inplace_dict_update_view(self, val, using_copy_on_write): # GH#47188 df = DataFrame({"x": [np.nan, 2], "y": [np.nan, 2]}) df_orig = df.copy() result_view = df[:] df.fillna(val, inplace=True) expected = DataFrame({"x": [-1, 2.0], "y": [-1.0, 2]}) tm.assert_frame_equal(df, expected) if using_copy_on_write: tm.assert_frame_equal(result_view, df_orig) else: tm.assert_frame_equal(result_view, expected) def test_single_block_df_with_horizontal_axis(self): # GH 47713 df = DataFrame( { "col1": [5, 0, np.nan, 10, np.nan], "col2": [7, np.nan, np.nan, 5, 3], "col3": [12, np.nan, 1, 2, 0], "col4": [np.nan, 1, 1, np.nan, 18], } ) result = df.fillna(50, limit=1, axis=1) expected = DataFrame( [ [5.0, 7.0, 12.0, 50.0], [0.0, 50.0, np.nan, 1.0], [50.0, np.nan, 1.0, 1.0], [10.0, 5.0, 2.0, 50.0], [50.0, 3.0, 0.0, 18.0], ], columns=["col1", "col2", "col3", "col4"], ) tm.assert_frame_equal(result, expected) def test_fillna_with_multi_index_frame(self): # GH 47649 pdf = DataFrame( { ("x", "a"): [np.nan, 2.0, 3.0], ("x", "b"): [1.0, 2.0, np.nan], ("y", "c"): [1.0, 2.0, np.nan], } ) expected = DataFrame( { ("x", "a"): [-1.0, 2.0, 3.0], ("x", "b"): [1.0, 2.0, -1.0], ("y", "c"): [1.0, 2.0, np.nan], } ) tm.assert_frame_equal(pdf.fillna({"x": -1}), expected) tm.assert_frame_equal(pdf.fillna({"x": -1, ("x", "b"): -2}), expected) expected = DataFrame( { ("x", "a"): [-1.0, 2.0, 3.0], ("x", "b"): [1.0, 2.0, -2.0], ("y", "c"): [1.0, 2.0, np.nan], } ) tm.assert_frame_equal(pdf.fillna({("x", "b"): -2, "x": -1}), expected) def test_fillna_nonconsolidated_frame(): # https://github.com/pandas-dev/pandas/issues/36495 df = DataFrame( [ [1, 1, 1, 1.0], [2, 2, 2, 2.0], [3, 3, 3, 3.0], ], columns=["i1", "i2", "i3", "f1"], ) df_nonconsol = df.pivot(index="i1", columns="i2") result = df_nonconsol.fillna(0) assert result.isna().sum().sum() == 0 def test_fillna_nones_inplace(): # GH 48480 df = DataFrame( [[None, None], [None, None]], columns=["A", "B"], ) with tm.assert_produces_warning(False): df.fillna(value={"A": 1, "B": 2}, inplace=True) expected = DataFrame([[1, 2], [1, 2]], columns=["A", "B"]) tm.assert_frame_equal(df, expected)