394 lines
12 KiB
Cython
394 lines
12 KiB
Cython
|
cimport cython
|
||
|
from cpython.datetime cimport (
|
||
|
date,
|
||
|
datetime,
|
||
|
time,
|
||
|
tzinfo,
|
||
|
)
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
cimport numpy as cnp
|
||
|
from numpy cimport (
|
||
|
int64_t,
|
||
|
intp_t,
|
||
|
ndarray,
|
||
|
)
|
||
|
|
||
|
cnp.import_array()
|
||
|
|
||
|
from .dtypes import Resolution
|
||
|
|
||
|
from .dtypes cimport (
|
||
|
c_Resolution,
|
||
|
periods_per_day,
|
||
|
)
|
||
|
from .nattype cimport (
|
||
|
NPY_NAT,
|
||
|
c_NaT as NaT,
|
||
|
)
|
||
|
from .np_datetime cimport (
|
||
|
NPY_DATETIMEUNIT,
|
||
|
NPY_FR_ns,
|
||
|
npy_datetimestruct,
|
||
|
pandas_datetime_to_datetimestruct,
|
||
|
)
|
||
|
from .offsets cimport BaseOffset
|
||
|
from .period cimport get_period_ordinal
|
||
|
from .timestamps cimport create_timestamp_from_ts
|
||
|
from .timezones cimport is_utc
|
||
|
from .tzconversion cimport Localizer
|
||
|
|
||
|
|
||
|
@cython.boundscheck(False)
|
||
|
@cython.wraparound(False)
|
||
|
def tz_convert_from_utc(ndarray stamps, tzinfo tz, NPY_DATETIMEUNIT reso=NPY_FR_ns):
|
||
|
# stamps is int64_t, arbitrary ndim
|
||
|
"""
|
||
|
Convert the values (in i8) from UTC to tz
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
stamps : ndarray[int64]
|
||
|
tz : tzinfo
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray[int64]
|
||
|
"""
|
||
|
cdef:
|
||
|
Localizer info = Localizer(tz, reso=reso)
|
||
|
int64_t utc_val, local_val
|
||
|
Py_ssize_t pos, i, n = stamps.size
|
||
|
|
||
|
ndarray result
|
||
|
cnp.broadcast mi
|
||
|
|
||
|
if tz is None or is_utc(tz) or stamps.size == 0:
|
||
|
# Much faster than going through the "standard" pattern below
|
||
|
return stamps.copy()
|
||
|
|
||
|
result = cnp.PyArray_EMPTY(stamps.ndim, stamps.shape, cnp.NPY_INT64, 0)
|
||
|
mi = cnp.PyArray_MultiIterNew2(result, stamps)
|
||
|
|
||
|
for i in range(n):
|
||
|
# Analogous to: utc_val = stamps[i]
|
||
|
utc_val = (<int64_t*>cnp.PyArray_MultiIter_DATA(mi, 1))[0]
|
||
|
|
||
|
if utc_val == NPY_NAT:
|
||
|
local_val = NPY_NAT
|
||
|
else:
|
||
|
local_val = info.utc_val_to_local_val(utc_val, &pos)
|
||
|
|
||
|
# Analogous to: result[i] = local_val
|
||
|
(<int64_t*>cnp.PyArray_MultiIter_DATA(mi, 0))[0] = local_val
|
||
|
|
||
|
cnp.PyArray_MultiIter_NEXT(mi)
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
# -------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
@cython.wraparound(False)
|
||
|
@cython.boundscheck(False)
|
||
|
def ints_to_pydatetime(
|
||
|
ndarray stamps,
|
||
|
tzinfo tz=None,
|
||
|
BaseOffset freq=None,
|
||
|
bint fold=False,
|
||
|
str box="datetime",
|
||
|
NPY_DATETIMEUNIT reso=NPY_FR_ns,
|
||
|
) -> np.ndarray:
|
||
|
# stamps is int64, arbitrary ndim
|
||
|
"""
|
||
|
Convert an i8 repr to an ndarray of datetimes, date, time or Timestamp.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
stamps : array of i8
|
||
|
tz : str, optional
|
||
|
convert to this timezone
|
||
|
freq : BaseOffset, optional
|
||
|
freq to convert
|
||
|
fold : bint, default is 0
|
||
|
Due to daylight saving time, one wall clock time can occur twice
|
||
|
when shifting from summer to winter time; fold describes whether the
|
||
|
datetime-like corresponds to the first (0) or the second time (1)
|
||
|
the wall clock hits the ambiguous time
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
box : {'datetime', 'timestamp', 'date', 'time'}, default 'datetime'
|
||
|
* If datetime, convert to datetime.datetime
|
||
|
* If date, convert to datetime.date
|
||
|
* If time, convert to datetime.time
|
||
|
* If Timestamp, convert to pandas.Timestamp
|
||
|
|
||
|
reso : NPY_DATETIMEUNIT, default NPY_FR_ns
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray[object] of type specified by box
|
||
|
"""
|
||
|
cdef:
|
||
|
Localizer info = Localizer(tz, reso=reso)
|
||
|
int64_t utc_val, local_val
|
||
|
Py_ssize_t i, n = stamps.size
|
||
|
Py_ssize_t pos = -1 # unused, avoid not-initialized warning
|
||
|
|
||
|
npy_datetimestruct dts
|
||
|
tzinfo new_tz
|
||
|
bint use_date = False, use_time = False, use_ts = False, use_pydt = False
|
||
|
object res_val
|
||
|
|
||
|
# Note that `result` (and thus `result_flat`) is C-order and
|
||
|
# `it` iterates C-order as well, so the iteration matches
|
||
|
# See discussion at
|
||
|
# github.com/pandas-dev/pandas/pull/46886#discussion_r860261305
|
||
|
ndarray result = cnp.PyArray_EMPTY(stamps.ndim, stamps.shape, cnp.NPY_OBJECT, 0)
|
||
|
object[::1] res_flat = result.ravel() # should NOT be a copy
|
||
|
cnp.flatiter it = cnp.PyArray_IterNew(stamps)
|
||
|
|
||
|
if box == "date":
|
||
|
assert (tz is None), "tz should be None when converting to date"
|
||
|
use_date = True
|
||
|
elif box == "timestamp":
|
||
|
use_ts = True
|
||
|
elif box == "time":
|
||
|
use_time = True
|
||
|
elif box == "datetime":
|
||
|
use_pydt = True
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"box must be one of 'datetime', 'date', 'time' or 'timestamp'"
|
||
|
)
|
||
|
|
||
|
for i in range(n):
|
||
|
# Analogous to: utc_val = stamps[i]
|
||
|
utc_val = (<int64_t*>cnp.PyArray_ITER_DATA(it))[0]
|
||
|
|
||
|
new_tz = tz
|
||
|
|
||
|
if utc_val == NPY_NAT:
|
||
|
res_val = <object>NaT
|
||
|
|
||
|
else:
|
||
|
|
||
|
local_val = info.utc_val_to_local_val(utc_val, &pos)
|
||
|
if info.use_pytz:
|
||
|
# find right representation of dst etc in pytz timezone
|
||
|
new_tz = tz._tzinfos[tz._transition_info[pos]]
|
||
|
|
||
|
pandas_datetime_to_datetimestruct(local_val, reso, &dts)
|
||
|
|
||
|
if use_ts:
|
||
|
res_val = create_timestamp_from_ts(
|
||
|
utc_val, dts, new_tz, freq, fold, reso=reso
|
||
|
)
|
||
|
elif use_pydt:
|
||
|
res_val = datetime(
|
||
|
dts.year, dts.month, dts.day, dts.hour, dts.min, dts.sec, dts.us,
|
||
|
new_tz, fold=fold,
|
||
|
)
|
||
|
elif use_date:
|
||
|
res_val = date(dts.year, dts.month, dts.day)
|
||
|
else:
|
||
|
res_val = time(dts.hour, dts.min, dts.sec, dts.us, new_tz, fold=fold)
|
||
|
|
||
|
# Note: we can index result directly instead of using PyArray_MultiIter_DATA
|
||
|
# like we do for the other functions because result is known C-contiguous
|
||
|
# and is the first argument to PyArray_MultiIterNew2. The usual pattern
|
||
|
# does not seem to work with object dtype.
|
||
|
# See discussion at
|
||
|
# github.com/pandas-dev/pandas/pull/46886#discussion_r860261305
|
||
|
res_flat[i] = res_val
|
||
|
|
||
|
cnp.PyArray_ITER_NEXT(it)
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
# -------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
cdef inline c_Resolution _reso_stamp(npy_datetimestruct *dts):
|
||
|
if dts.ps != 0:
|
||
|
return c_Resolution.RESO_NS
|
||
|
elif dts.us != 0:
|
||
|
if dts.us % 1000 == 0:
|
||
|
return c_Resolution.RESO_MS
|
||
|
return c_Resolution.RESO_US
|
||
|
elif dts.sec != 0:
|
||
|
return c_Resolution.RESO_SEC
|
||
|
elif dts.min != 0:
|
||
|
return c_Resolution.RESO_MIN
|
||
|
elif dts.hour != 0:
|
||
|
return c_Resolution.RESO_HR
|
||
|
return c_Resolution.RESO_DAY
|
||
|
|
||
|
|
||
|
@cython.wraparound(False)
|
||
|
@cython.boundscheck(False)
|
||
|
def get_resolution(
|
||
|
ndarray stamps, tzinfo tz=None, NPY_DATETIMEUNIT reso=NPY_FR_ns
|
||
|
) -> Resolution:
|
||
|
# stamps is int64_t, any ndim
|
||
|
cdef:
|
||
|
Localizer info = Localizer(tz, reso=reso)
|
||
|
int64_t utc_val, local_val
|
||
|
Py_ssize_t i, n = stamps.size
|
||
|
Py_ssize_t pos = -1 # unused, avoid not-initialized warning
|
||
|
cnp.flatiter it = cnp.PyArray_IterNew(stamps)
|
||
|
|
||
|
npy_datetimestruct dts
|
||
|
c_Resolution pd_reso = c_Resolution.RESO_DAY, curr_reso
|
||
|
|
||
|
for i in range(n):
|
||
|
# Analogous to: utc_val = stamps[i]
|
||
|
utc_val = cnp.PyArray_GETITEM(stamps, cnp.PyArray_ITER_DATA(it))
|
||
|
|
||
|
if utc_val == NPY_NAT:
|
||
|
pass
|
||
|
else:
|
||
|
local_val = info.utc_val_to_local_val(utc_val, &pos)
|
||
|
|
||
|
pandas_datetime_to_datetimestruct(local_val, reso, &dts)
|
||
|
curr_reso = _reso_stamp(&dts)
|
||
|
if curr_reso < pd_reso:
|
||
|
pd_reso = curr_reso
|
||
|
|
||
|
cnp.PyArray_ITER_NEXT(it)
|
||
|
|
||
|
return Resolution(pd_reso)
|
||
|
|
||
|
|
||
|
# -------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
@cython.cdivision(False)
|
||
|
@cython.wraparound(False)
|
||
|
@cython.boundscheck(False)
|
||
|
cpdef ndarray normalize_i8_timestamps(ndarray stamps, tzinfo tz, NPY_DATETIMEUNIT reso):
|
||
|
# stamps is int64_t, arbitrary ndim
|
||
|
"""
|
||
|
Normalize each of the (nanosecond) timezone aware timestamps in the given
|
||
|
array by rounding down to the beginning of the day (i.e. midnight).
|
||
|
This is midnight for timezone, `tz`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
stamps : int64 ndarray
|
||
|
tz : tzinfo or None
|
||
|
reso : NPY_DATETIMEUNIT
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
result : int64 ndarray of converted of normalized nanosecond timestamps
|
||
|
"""
|
||
|
cdef:
|
||
|
Localizer info = Localizer(tz, reso=reso)
|
||
|
int64_t utc_val, local_val, res_val
|
||
|
Py_ssize_t i, n = stamps.size
|
||
|
Py_ssize_t pos = -1 # unused, avoid not-initialized warning
|
||
|
|
||
|
ndarray result = cnp.PyArray_EMPTY(stamps.ndim, stamps.shape, cnp.NPY_INT64, 0)
|
||
|
cnp.broadcast mi = cnp.PyArray_MultiIterNew2(result, stamps)
|
||
|
int64_t ppd = periods_per_day(reso)
|
||
|
|
||
|
for i in range(n):
|
||
|
# Analogous to: utc_val = stamps[i]
|
||
|
utc_val = (<int64_t*>cnp.PyArray_MultiIter_DATA(mi, 1))[0]
|
||
|
|
||
|
if utc_val == NPY_NAT:
|
||
|
res_val = NPY_NAT
|
||
|
else:
|
||
|
local_val = info.utc_val_to_local_val(utc_val, &pos)
|
||
|
res_val = local_val - (local_val % ppd)
|
||
|
|
||
|
# Analogous to: result[i] = res_val
|
||
|
(<int64_t*>cnp.PyArray_MultiIter_DATA(mi, 0))[0] = res_val
|
||
|
|
||
|
cnp.PyArray_MultiIter_NEXT(mi)
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
@cython.wraparound(False)
|
||
|
@cython.boundscheck(False)
|
||
|
def is_date_array_normalized(ndarray stamps, tzinfo tz, NPY_DATETIMEUNIT reso) -> bool:
|
||
|
# stamps is int64_t, arbitrary ndim
|
||
|
"""
|
||
|
Check if all of the given (nanosecond) timestamps are normalized to
|
||
|
midnight, i.e. hour == minute == second == 0. If the optional timezone
|
||
|
`tz` is not None, then this is midnight for this timezone.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
stamps : int64 ndarray
|
||
|
tz : tzinfo or None
|
||
|
reso : NPY_DATETIMEUNIT
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
is_normalized : bool True if all stamps are normalized
|
||
|
"""
|
||
|
cdef:
|
||
|
Localizer info = Localizer(tz, reso=reso)
|
||
|
int64_t utc_val, local_val
|
||
|
Py_ssize_t i, n = stamps.size
|
||
|
Py_ssize_t pos = -1 # unused, avoid not-initialized warning
|
||
|
cnp.flatiter it = cnp.PyArray_IterNew(stamps)
|
||
|
int64_t ppd = periods_per_day(reso)
|
||
|
|
||
|
for i in range(n):
|
||
|
# Analogous to: utc_val = stamps[i]
|
||
|
utc_val = cnp.PyArray_GETITEM(stamps, cnp.PyArray_ITER_DATA(it))
|
||
|
|
||
|
local_val = info.utc_val_to_local_val(utc_val, &pos)
|
||
|
|
||
|
if local_val % ppd != 0:
|
||
|
return False
|
||
|
|
||
|
cnp.PyArray_ITER_NEXT(it)
|
||
|
|
||
|
return True
|
||
|
|
||
|
|
||
|
# -------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
@cython.wraparound(False)
|
||
|
@cython.boundscheck(False)
|
||
|
def dt64arr_to_periodarr(
|
||
|
ndarray stamps, int freq, tzinfo tz, NPY_DATETIMEUNIT reso=NPY_FR_ns
|
||
|
):
|
||
|
# stamps is int64_t, arbitrary ndim
|
||
|
cdef:
|
||
|
Localizer info = Localizer(tz, reso=reso)
|
||
|
Py_ssize_t i, n = stamps.size
|
||
|
Py_ssize_t pos = -1 # unused, avoid not-initialized warning
|
||
|
int64_t utc_val, local_val, res_val
|
||
|
|
||
|
npy_datetimestruct dts
|
||
|
ndarray result = cnp.PyArray_EMPTY(stamps.ndim, stamps.shape, cnp.NPY_INT64, 0)
|
||
|
cnp.broadcast mi = cnp.PyArray_MultiIterNew2(result, stamps)
|
||
|
|
||
|
for i in range(n):
|
||
|
# Analogous to: utc_val = stamps[i]
|
||
|
utc_val = (<int64_t*>cnp.PyArray_MultiIter_DATA(mi, 1))[0]
|
||
|
|
||
|
if utc_val == NPY_NAT:
|
||
|
res_val = NPY_NAT
|
||
|
else:
|
||
|
local_val = info.utc_val_to_local_val(utc_val, &pos)
|
||
|
pandas_datetime_to_datetimestruct(local_val, reso, &dts)
|
||
|
res_val = get_period_ordinal(&dts, freq)
|
||
|
|
||
|
# Analogous to: result[i] = res_val
|
||
|
(<int64_t*>cnp.PyArray_MultiIter_DATA(mi, 0))[0] = res_val
|
||
|
|
||
|
cnp.PyArray_MultiIter_NEXT(mi)
|
||
|
|
||
|
return result
|