543 lines
17 KiB
Python
543 lines
17 KiB
Python
"""
|
|
Module that contains many useful utilities
|
|
for validating data or function arguments
|
|
"""
|
|
from __future__ import annotations
|
|
|
|
from typing import (
|
|
Any,
|
|
Iterable,
|
|
Sequence,
|
|
TypeVar,
|
|
overload,
|
|
)
|
|
import warnings
|
|
|
|
import numpy as np
|
|
|
|
from pandas.util._exceptions import find_stack_level
|
|
|
|
from pandas.core.dtypes.common import (
|
|
is_bool,
|
|
is_integer,
|
|
)
|
|
|
|
BoolishT = TypeVar("BoolishT", bool, int)
|
|
BoolishNoneT = TypeVar("BoolishNoneT", bool, int, None)
|
|
|
|
|
|
def _check_arg_length(fname, args, max_fname_arg_count, compat_args):
|
|
"""
|
|
Checks whether 'args' has length of at most 'compat_args'. Raises
|
|
a TypeError if that is not the case, similar to in Python when a
|
|
function is called with too many arguments.
|
|
"""
|
|
if max_fname_arg_count < 0:
|
|
raise ValueError("'max_fname_arg_count' must be non-negative")
|
|
|
|
if len(args) > len(compat_args):
|
|
max_arg_count = len(compat_args) + max_fname_arg_count
|
|
actual_arg_count = len(args) + max_fname_arg_count
|
|
argument = "argument" if max_arg_count == 1 else "arguments"
|
|
|
|
raise TypeError(
|
|
f"{fname}() takes at most {max_arg_count} {argument} "
|
|
f"({actual_arg_count} given)"
|
|
)
|
|
|
|
|
|
def _check_for_default_values(fname, arg_val_dict, compat_args):
|
|
"""
|
|
Check that the keys in `arg_val_dict` are mapped to their
|
|
default values as specified in `compat_args`.
|
|
|
|
Note that this function is to be called only when it has been
|
|
checked that arg_val_dict.keys() is a subset of compat_args
|
|
"""
|
|
for key in arg_val_dict:
|
|
# try checking equality directly with '=' operator,
|
|
# as comparison may have been overridden for the left
|
|
# hand object
|
|
try:
|
|
v1 = arg_val_dict[key]
|
|
v2 = compat_args[key]
|
|
|
|
# check for None-ness otherwise we could end up
|
|
# comparing a numpy array vs None
|
|
if (v1 is not None and v2 is None) or (v1 is None and v2 is not None):
|
|
match = False
|
|
else:
|
|
match = v1 == v2
|
|
|
|
if not is_bool(match):
|
|
raise ValueError("'match' is not a boolean")
|
|
|
|
# could not compare them directly, so try comparison
|
|
# using the 'is' operator
|
|
except ValueError:
|
|
match = arg_val_dict[key] is compat_args[key]
|
|
|
|
if not match:
|
|
raise ValueError(
|
|
f"the '{key}' parameter is not supported in "
|
|
f"the pandas implementation of {fname}()"
|
|
)
|
|
|
|
|
|
def validate_args(fname, args, max_fname_arg_count, compat_args) -> None:
|
|
"""
|
|
Checks whether the length of the `*args` argument passed into a function
|
|
has at most `len(compat_args)` arguments and whether or not all of these
|
|
elements in `args` are set to their default values.
|
|
|
|
Parameters
|
|
----------
|
|
fname : str
|
|
The name of the function being passed the `*args` parameter
|
|
args : tuple
|
|
The `*args` parameter passed into a function
|
|
max_fname_arg_count : int
|
|
The maximum number of arguments that the function `fname`
|
|
can accept, excluding those in `args`. Used for displaying
|
|
appropriate error messages. Must be non-negative.
|
|
compat_args : dict
|
|
A dictionary of keys and their associated default values.
|
|
In order to accommodate buggy behaviour in some versions of `numpy`,
|
|
where a signature displayed keyword arguments but then passed those
|
|
arguments **positionally** internally when calling downstream
|
|
implementations, a dict ensures that the original
|
|
order of the keyword arguments is enforced.
|
|
|
|
Raises
|
|
------
|
|
TypeError
|
|
If `args` contains more values than there are `compat_args`
|
|
ValueError
|
|
If `args` contains values that do not correspond to those
|
|
of the default values specified in `compat_args`
|
|
"""
|
|
_check_arg_length(fname, args, max_fname_arg_count, compat_args)
|
|
|
|
# We do this so that we can provide a more informative
|
|
# error message about the parameters that we are not
|
|
# supporting in the pandas implementation of 'fname'
|
|
kwargs = dict(zip(compat_args, args))
|
|
_check_for_default_values(fname, kwargs, compat_args)
|
|
|
|
|
|
def _check_for_invalid_keys(fname, kwargs, compat_args):
|
|
"""
|
|
Checks whether 'kwargs' contains any keys that are not
|
|
in 'compat_args' and raises a TypeError if there is one.
|
|
"""
|
|
# set(dict) --> set of the dictionary's keys
|
|
diff = set(kwargs) - set(compat_args)
|
|
|
|
if diff:
|
|
bad_arg = list(diff)[0]
|
|
raise TypeError(f"{fname}() got an unexpected keyword argument '{bad_arg}'")
|
|
|
|
|
|
def validate_kwargs(fname, kwargs, compat_args) -> None:
|
|
"""
|
|
Checks whether parameters passed to the **kwargs argument in a
|
|
function `fname` are valid parameters as specified in `*compat_args`
|
|
and whether or not they are set to their default values.
|
|
|
|
Parameters
|
|
----------
|
|
fname : str
|
|
The name of the function being passed the `**kwargs` parameter
|
|
kwargs : dict
|
|
The `**kwargs` parameter passed into `fname`
|
|
compat_args: dict
|
|
A dictionary of keys that `kwargs` is allowed to have and their
|
|
associated default values
|
|
|
|
Raises
|
|
------
|
|
TypeError if `kwargs` contains keys not in `compat_args`
|
|
ValueError if `kwargs` contains keys in `compat_args` that do not
|
|
map to the default values specified in `compat_args`
|
|
"""
|
|
kwds = kwargs.copy()
|
|
_check_for_invalid_keys(fname, kwargs, compat_args)
|
|
_check_for_default_values(fname, kwds, compat_args)
|
|
|
|
|
|
def validate_args_and_kwargs(
|
|
fname, args, kwargs, max_fname_arg_count, compat_args
|
|
) -> None:
|
|
"""
|
|
Checks whether parameters passed to the *args and **kwargs argument in a
|
|
function `fname` are valid parameters as specified in `*compat_args`
|
|
and whether or not they are set to their default values.
|
|
|
|
Parameters
|
|
----------
|
|
fname: str
|
|
The name of the function being passed the `**kwargs` parameter
|
|
args: tuple
|
|
The `*args` parameter passed into a function
|
|
kwargs: dict
|
|
The `**kwargs` parameter passed into `fname`
|
|
max_fname_arg_count: int
|
|
The minimum number of arguments that the function `fname`
|
|
requires, excluding those in `args`. Used for displaying
|
|
appropriate error messages. Must be non-negative.
|
|
compat_args: dict
|
|
A dictionary of keys that `kwargs` is allowed to
|
|
have and their associated default values.
|
|
|
|
Raises
|
|
------
|
|
TypeError if `args` contains more values than there are
|
|
`compat_args` OR `kwargs` contains keys not in `compat_args`
|
|
ValueError if `args` contains values not at the default value (`None`)
|
|
`kwargs` contains keys in `compat_args` that do not map to the default
|
|
value as specified in `compat_args`
|
|
|
|
See Also
|
|
--------
|
|
validate_args : Purely args validation.
|
|
validate_kwargs : Purely kwargs validation.
|
|
|
|
"""
|
|
# Check that the total number of arguments passed in (i.e.
|
|
# args and kwargs) does not exceed the length of compat_args
|
|
_check_arg_length(
|
|
fname, args + tuple(kwargs.values()), max_fname_arg_count, compat_args
|
|
)
|
|
|
|
# Check there is no overlap with the positional and keyword
|
|
# arguments, similar to what is done in actual Python functions
|
|
args_dict = dict(zip(compat_args, args))
|
|
|
|
for key in args_dict:
|
|
if key in kwargs:
|
|
raise TypeError(
|
|
f"{fname}() got multiple values for keyword argument '{key}'"
|
|
)
|
|
|
|
kwargs.update(args_dict)
|
|
validate_kwargs(fname, kwargs, compat_args)
|
|
|
|
|
|
def validate_bool_kwarg(
|
|
value: BoolishNoneT, arg_name, none_allowed=True, int_allowed=False
|
|
) -> BoolishNoneT:
|
|
"""
|
|
Ensure that argument passed in arg_name can be interpreted as boolean.
|
|
|
|
Parameters
|
|
----------
|
|
value : bool
|
|
Value to be validated.
|
|
arg_name : str
|
|
Name of the argument. To be reflected in the error message.
|
|
none_allowed : bool, default True
|
|
Whether to consider None to be a valid boolean.
|
|
int_allowed : bool, default False
|
|
Whether to consider integer value to be a valid boolean.
|
|
|
|
Returns
|
|
-------
|
|
value
|
|
The same value as input.
|
|
|
|
Raises
|
|
------
|
|
ValueError
|
|
If the value is not a valid boolean.
|
|
"""
|
|
good_value = is_bool(value)
|
|
if none_allowed:
|
|
good_value = good_value or value is None
|
|
|
|
if int_allowed:
|
|
good_value = good_value or isinstance(value, int)
|
|
|
|
if not good_value:
|
|
raise ValueError(
|
|
f'For argument "{arg_name}" expected type bool, received '
|
|
f"type {type(value).__name__}."
|
|
)
|
|
return value
|
|
|
|
|
|
def validate_axis_style_args(
|
|
data, args, kwargs, arg_name, method_name
|
|
) -> dict[str, Any]:
|
|
"""
|
|
Argument handler for mixed index, columns / axis functions
|
|
|
|
In an attempt to handle both `.method(index, columns)`, and
|
|
`.method(arg, axis=.)`, we have to do some bad things to argument
|
|
parsing. This translates all arguments to `{index=., columns=.}` style.
|
|
|
|
Parameters
|
|
----------
|
|
data : DataFrame
|
|
args : tuple
|
|
All positional arguments from the user
|
|
kwargs : dict
|
|
All keyword arguments from the user
|
|
arg_name, method_name : str
|
|
Used for better error messages
|
|
|
|
Returns
|
|
-------
|
|
kwargs : dict
|
|
A dictionary of keyword arguments. Doesn't modify ``kwargs``
|
|
inplace, so update them with the return value here.
|
|
|
|
Examples
|
|
--------
|
|
>>> df = pd.DataFrame(range(2))
|
|
>>> validate_axis_style_args(df, (str.upper,), {'columns': id},
|
|
... 'mapper', 'rename')
|
|
{'columns': <built-in function id>, 'index': <method 'upper' of 'str' objects>}
|
|
|
|
This emits a warning
|
|
>>> validate_axis_style_args(df, (str.upper, id), {},
|
|
... 'mapper', 'rename')
|
|
{'index': <method 'upper' of 'str' objects>, 'columns': <built-in function id>}
|
|
"""
|
|
# TODO: Change to keyword-only args and remove all this
|
|
|
|
out = {}
|
|
# Goal: fill 'out' with index/columns-style arguments
|
|
# like out = {'index': foo, 'columns': bar}
|
|
|
|
# Start by validating for consistency
|
|
if "axis" in kwargs and any(x in kwargs for x in data._AXIS_TO_AXIS_NUMBER):
|
|
msg = "Cannot specify both 'axis' and any of 'index' or 'columns'."
|
|
raise TypeError(msg)
|
|
|
|
# First fill with explicit values provided by the user...
|
|
if arg_name in kwargs:
|
|
if args:
|
|
msg = f"{method_name} got multiple values for argument '{arg_name}'"
|
|
raise TypeError(msg)
|
|
|
|
axis = data._get_axis_name(kwargs.get("axis", 0))
|
|
out[axis] = kwargs[arg_name]
|
|
|
|
# More user-provided arguments, now from kwargs
|
|
for k, v in kwargs.items():
|
|
try:
|
|
ax = data._get_axis_name(k)
|
|
except ValueError:
|
|
pass
|
|
else:
|
|
out[ax] = v
|
|
|
|
# All user-provided kwargs have been handled now.
|
|
# Now we supplement with positional arguments, emitting warnings
|
|
# when there's ambiguity and raising when there's conflicts
|
|
|
|
if len(args) == 0:
|
|
pass # It's up to the function to decide if this is valid
|
|
elif len(args) == 1:
|
|
axis = data._get_axis_name(kwargs.get("axis", 0))
|
|
out[axis] = args[0]
|
|
elif len(args) == 2:
|
|
if "axis" in kwargs:
|
|
# Unambiguously wrong
|
|
msg = "Cannot specify both 'axis' and any of 'index' or 'columns'"
|
|
raise TypeError(msg)
|
|
|
|
msg = (
|
|
f"Interpreting call\n\t'.{method_name}(a, b)' as "
|
|
f"\n\t'.{method_name}(index=a, columns=b)'.\nUse named "
|
|
"arguments to remove any ambiguity. In the future, using "
|
|
"positional arguments for 'index' or 'columns' will raise "
|
|
"a 'TypeError'."
|
|
)
|
|
warnings.warn(msg, FutureWarning, stacklevel=find_stack_level())
|
|
out[data._get_axis_name(0)] = args[0]
|
|
out[data._get_axis_name(1)] = args[1]
|
|
else:
|
|
msg = f"Cannot specify all of '{arg_name}', 'index', 'columns'."
|
|
raise TypeError(msg)
|
|
return out
|
|
|
|
|
|
def validate_fillna_kwargs(value, method, validate_scalar_dict_value: bool = True):
|
|
"""
|
|
Validate the keyword arguments to 'fillna'.
|
|
|
|
This checks that exactly one of 'value' and 'method' is specified.
|
|
If 'method' is specified, this validates that it's a valid method.
|
|
|
|
Parameters
|
|
----------
|
|
value, method : object
|
|
The 'value' and 'method' keyword arguments for 'fillna'.
|
|
validate_scalar_dict_value : bool, default True
|
|
Whether to validate that 'value' is a scalar or dict. Specifically,
|
|
validate that it is not a list or tuple.
|
|
|
|
Returns
|
|
-------
|
|
value, method : object
|
|
"""
|
|
from pandas.core.missing import clean_fill_method
|
|
|
|
if value is None and method is None:
|
|
raise ValueError("Must specify a fill 'value' or 'method'.")
|
|
elif value is None and method is not None:
|
|
method = clean_fill_method(method)
|
|
|
|
elif value is not None and method is None:
|
|
if validate_scalar_dict_value and isinstance(value, (list, tuple)):
|
|
raise TypeError(
|
|
'"value" parameter must be a scalar or dict, but '
|
|
f'you passed a "{type(value).__name__}"'
|
|
)
|
|
|
|
elif value is not None and method is not None:
|
|
raise ValueError("Cannot specify both 'value' and 'method'.")
|
|
|
|
return value, method
|
|
|
|
|
|
def validate_percentile(q: float | Iterable[float]) -> np.ndarray:
|
|
"""
|
|
Validate percentiles (used by describe and quantile).
|
|
|
|
This function checks if the given float or iterable of floats is a valid percentile
|
|
otherwise raises a ValueError.
|
|
|
|
Parameters
|
|
----------
|
|
q: float or iterable of floats
|
|
A single percentile or an iterable of percentiles.
|
|
|
|
Returns
|
|
-------
|
|
ndarray
|
|
An ndarray of the percentiles if valid.
|
|
|
|
Raises
|
|
------
|
|
ValueError if percentiles are not in given interval([0, 1]).
|
|
"""
|
|
q_arr = np.asarray(q)
|
|
# Don't change this to an f-string. The string formatting
|
|
# is too expensive for cases where we don't need it.
|
|
msg = "percentiles should all be in the interval [0, 1]. Try {} instead."
|
|
if q_arr.ndim == 0:
|
|
if not 0 <= q_arr <= 1:
|
|
raise ValueError(msg.format(q_arr / 100.0))
|
|
else:
|
|
if not all(0 <= qs <= 1 for qs in q_arr):
|
|
raise ValueError(msg.format(q_arr / 100.0))
|
|
return q_arr
|
|
|
|
|
|
@overload
|
|
def validate_ascending(ascending: BoolishT) -> BoolishT:
|
|
...
|
|
|
|
|
|
@overload
|
|
def validate_ascending(ascending: Sequence[BoolishT]) -> list[BoolishT]:
|
|
...
|
|
|
|
|
|
def validate_ascending(
|
|
ascending: bool | int | Sequence[BoolishT],
|
|
) -> bool | int | list[BoolishT]:
|
|
"""Validate ``ascending`` kwargs for ``sort_index`` method."""
|
|
kwargs = {"none_allowed": False, "int_allowed": True}
|
|
if not isinstance(ascending, Sequence):
|
|
return validate_bool_kwarg(ascending, "ascending", **kwargs)
|
|
|
|
return [validate_bool_kwarg(item, "ascending", **kwargs) for item in ascending]
|
|
|
|
|
|
def validate_endpoints(closed: str | None) -> tuple[bool, bool]:
|
|
"""
|
|
Check that the `closed` argument is among [None, "left", "right"]
|
|
|
|
Parameters
|
|
----------
|
|
closed : {None, "left", "right"}
|
|
|
|
Returns
|
|
-------
|
|
left_closed : bool
|
|
right_closed : bool
|
|
|
|
Raises
|
|
------
|
|
ValueError : if argument is not among valid values
|
|
"""
|
|
left_closed = False
|
|
right_closed = False
|
|
|
|
if closed is None:
|
|
left_closed = True
|
|
right_closed = True
|
|
elif closed == "left":
|
|
left_closed = True
|
|
elif closed == "right":
|
|
right_closed = True
|
|
else:
|
|
raise ValueError("Closed has to be either 'left', 'right' or None")
|
|
|
|
return left_closed, right_closed
|
|
|
|
|
|
def validate_inclusive(inclusive: str | None) -> tuple[bool, bool]:
|
|
"""
|
|
Check that the `inclusive` argument is among {"both", "neither", "left", "right"}.
|
|
|
|
Parameters
|
|
----------
|
|
inclusive : {"both", "neither", "left", "right"}
|
|
|
|
Returns
|
|
-------
|
|
left_right_inclusive : tuple[bool, bool]
|
|
|
|
Raises
|
|
------
|
|
ValueError : if argument is not among valid values
|
|
"""
|
|
left_right_inclusive: tuple[bool, bool] | None = None
|
|
|
|
if isinstance(inclusive, str):
|
|
left_right_inclusive = {
|
|
"both": (True, True),
|
|
"left": (True, False),
|
|
"right": (False, True),
|
|
"neither": (False, False),
|
|
}.get(inclusive)
|
|
|
|
if left_right_inclusive is None:
|
|
raise ValueError(
|
|
"Inclusive has to be either 'both', 'neither', 'left' or 'right'"
|
|
)
|
|
|
|
return left_right_inclusive
|
|
|
|
|
|
def validate_insert_loc(loc: int, length: int) -> int:
|
|
"""
|
|
Check that we have an integer between -length and length, inclusive.
|
|
|
|
Standardize negative loc to within [0, length].
|
|
|
|
The exceptions we raise on failure match np.insert.
|
|
"""
|
|
if not is_integer(loc):
|
|
raise TypeError(f"loc must be an integer between -{length} and {length}")
|
|
|
|
if loc < 0:
|
|
loc += length
|
|
if not 0 <= loc <= length:
|
|
raise IndexError(f"loc must be an integer between -{length} and {length}")
|
|
return loc
|