281 lines
9.7 KiB
Python
281 lines
9.7 KiB
Python
from datetime import (
|
|
time,
|
|
timedelta,
|
|
)
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pandas.errors import OutOfBoundsTimedelta
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
Series,
|
|
TimedeltaIndex,
|
|
isna,
|
|
to_timedelta,
|
|
)
|
|
import pandas._testing as tm
|
|
from pandas.core.arrays import TimedeltaArray
|
|
|
|
|
|
class TestTimedeltas:
|
|
@pytest.mark.parametrize("readonly", [True, False])
|
|
def test_to_timedelta_readonly(self, readonly):
|
|
# GH#34857
|
|
arr = np.array([], dtype=object)
|
|
if readonly:
|
|
arr.setflags(write=False)
|
|
result = to_timedelta(arr)
|
|
expected = to_timedelta([])
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_to_timedelta_null(self):
|
|
result = to_timedelta(["", ""])
|
|
assert isna(result).all()
|
|
|
|
def test_to_timedelta_same_np_timedelta64(self):
|
|
# pass thru
|
|
result = to_timedelta(np.array([np.timedelta64(1, "s")]))
|
|
expected = pd.Index(np.array([np.timedelta64(1, "s")]))
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_to_timedelta_series(self):
|
|
# Series
|
|
expected = Series([timedelta(days=1), timedelta(days=1, seconds=1)])
|
|
result = to_timedelta(Series(["1d", "1days 00:00:01"]))
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_to_timedelta_units(self):
|
|
# with units
|
|
result = TimedeltaIndex(
|
|
[np.timedelta64(0, "ns"), np.timedelta64(10, "s").astype("m8[ns]")]
|
|
)
|
|
expected = to_timedelta([0, 10], unit="s")
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"dtype, unit",
|
|
[
|
|
["int64", "s"],
|
|
["int64", "m"],
|
|
["int64", "h"],
|
|
["timedelta64[s]", "s"],
|
|
["timedelta64[D]", "D"],
|
|
],
|
|
)
|
|
def test_to_timedelta_units_dtypes(self, dtype, unit):
|
|
# arrays of various dtypes
|
|
arr = np.array([1] * 5, dtype=dtype)
|
|
result = to_timedelta(arr, unit=unit)
|
|
expected = TimedeltaIndex([np.timedelta64(1, unit)] * 5)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_to_timedelta_oob_non_nano(self):
|
|
arr = np.array([pd.NaT.value + 1], dtype="timedelta64[s]")
|
|
|
|
msg = (
|
|
"Cannot convert -9223372036854775807 seconds to "
|
|
r"timedelta64\[ns\] without overflow"
|
|
)
|
|
with pytest.raises(OutOfBoundsTimedelta, match=msg):
|
|
to_timedelta(arr)
|
|
|
|
with pytest.raises(OutOfBoundsTimedelta, match=msg):
|
|
TimedeltaIndex(arr)
|
|
|
|
with pytest.raises(OutOfBoundsTimedelta, match=msg):
|
|
TimedeltaArray._from_sequence(arr)
|
|
|
|
@pytest.mark.parametrize(
|
|
"arg", [np.arange(10).reshape(2, 5), pd.DataFrame(np.arange(10).reshape(2, 5))]
|
|
)
|
|
@pytest.mark.parametrize("errors", ["ignore", "raise", "coerce"])
|
|
def test_to_timedelta_dataframe(self, arg, errors):
|
|
# GH 11776
|
|
with pytest.raises(TypeError, match="1-d array"):
|
|
to_timedelta(arg, errors=errors)
|
|
|
|
def test_to_timedelta_invalid_errors(self):
|
|
|
|
# bad value for errors parameter
|
|
msg = "errors must be one of"
|
|
with pytest.raises(ValueError, match=msg):
|
|
to_timedelta(["foo"], errors="never")
|
|
|
|
@pytest.mark.parametrize("arg", [[1, 2], 1])
|
|
def test_to_timedelta_invalid_unit(self, arg):
|
|
# these will error
|
|
msg = "invalid unit abbreviation: foo"
|
|
with pytest.raises(ValueError, match=msg):
|
|
to_timedelta(arg, unit="foo")
|
|
|
|
def test_to_timedelta_time(self):
|
|
# time not supported ATM
|
|
msg = (
|
|
"Value must be Timedelta, string, integer, float, timedelta or convertible"
|
|
)
|
|
with pytest.raises(ValueError, match=msg):
|
|
to_timedelta(time(second=1))
|
|
assert to_timedelta(time(second=1), errors="coerce") is pd.NaT
|
|
|
|
def test_to_timedelta_bad_value(self):
|
|
msg = "Could not convert 'foo' to NumPy timedelta"
|
|
with pytest.raises(ValueError, match=msg):
|
|
to_timedelta(["foo", "bar"])
|
|
|
|
def test_to_timedelta_bad_value_coerce(self):
|
|
tm.assert_index_equal(
|
|
TimedeltaIndex([pd.NaT, pd.NaT]),
|
|
to_timedelta(["foo", "bar"], errors="coerce"),
|
|
)
|
|
|
|
tm.assert_index_equal(
|
|
TimedeltaIndex(["1 day", pd.NaT, "1 min"]),
|
|
to_timedelta(["1 day", "bar", "1 min"], errors="coerce"),
|
|
)
|
|
|
|
def test_to_timedelta_invalid_errors_ignore(self):
|
|
# gh-13613: these should not error because errors='ignore'
|
|
invalid_data = "apple"
|
|
assert invalid_data == to_timedelta(invalid_data, errors="ignore")
|
|
|
|
invalid_data = ["apple", "1 days"]
|
|
tm.assert_numpy_array_equal(
|
|
np.array(invalid_data, dtype=object),
|
|
to_timedelta(invalid_data, errors="ignore"),
|
|
)
|
|
|
|
invalid_data = pd.Index(["apple", "1 days"])
|
|
tm.assert_index_equal(invalid_data, to_timedelta(invalid_data, errors="ignore"))
|
|
|
|
invalid_data = Series(["apple", "1 days"])
|
|
tm.assert_series_equal(
|
|
invalid_data, to_timedelta(invalid_data, errors="ignore")
|
|
)
|
|
|
|
@pytest.mark.parametrize(
|
|
"val, warning",
|
|
[
|
|
("1M", FutureWarning),
|
|
("1 M", FutureWarning),
|
|
("1Y", FutureWarning),
|
|
("1 Y", FutureWarning),
|
|
("1y", FutureWarning),
|
|
("1 y", FutureWarning),
|
|
("1m", None),
|
|
("1 m", None),
|
|
("1 day", None),
|
|
("2day", None),
|
|
],
|
|
)
|
|
def test_unambiguous_timedelta_values(self, val, warning):
|
|
# GH36666 Deprecate use of strings denoting units with 'M', 'Y', 'm' or 'y'
|
|
# in pd.to_timedelta
|
|
msg = "Units 'M', 'Y' and 'y' do not represent unambiguous timedelta"
|
|
with tm.assert_produces_warning(warning, match=msg, check_stacklevel=False):
|
|
to_timedelta(val)
|
|
|
|
def test_to_timedelta_via_apply(self):
|
|
# GH 5458
|
|
expected = Series([np.timedelta64(1, "s")])
|
|
result = Series(["00:00:01"]).apply(to_timedelta)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = Series([to_timedelta("00:00:01")])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_to_timedelta_inference_without_warning(self):
|
|
# GH#41731 inference produces a warning in the Series constructor,
|
|
# but _not_ in to_timedelta
|
|
vals = ["00:00:01", pd.NaT]
|
|
with tm.assert_produces_warning(None):
|
|
result = to_timedelta(vals)
|
|
|
|
expected = TimedeltaIndex([pd.Timedelta(seconds=1), pd.NaT])
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_to_timedelta_on_missing_values(self):
|
|
# GH5438
|
|
timedelta_NaT = np.timedelta64("NaT")
|
|
|
|
actual = to_timedelta(Series(["00:00:01", np.nan]))
|
|
expected = Series(
|
|
[np.timedelta64(1000000000, "ns"), timedelta_NaT],
|
|
dtype=f"{tm.ENDIAN}m8[ns]",
|
|
)
|
|
tm.assert_series_equal(actual, expected)
|
|
|
|
with tm.assert_produces_warning(FutureWarning, match="Inferring timedelta64"):
|
|
ser = Series(["00:00:01", pd.NaT])
|
|
assert ser.dtype == "m8[ns]"
|
|
actual = to_timedelta(ser)
|
|
tm.assert_series_equal(actual, expected)
|
|
|
|
@pytest.mark.parametrize("val", [np.nan, pd.NaT])
|
|
def test_to_timedelta_on_missing_values_scalar(self, val):
|
|
actual = to_timedelta(val)
|
|
assert actual.value == np.timedelta64("NaT").astype("int64")
|
|
|
|
def test_to_timedelta_float(self):
|
|
# https://github.com/pandas-dev/pandas/issues/25077
|
|
arr = np.arange(0, 1, 1e-6)[-10:]
|
|
result = to_timedelta(arr, unit="s")
|
|
expected_asi8 = np.arange(999990000, 10**9, 1000, dtype="int64")
|
|
tm.assert_numpy_array_equal(result.asi8, expected_asi8)
|
|
|
|
def test_to_timedelta_coerce_strings_unit(self):
|
|
arr = np.array([1, 2, "error"], dtype=object)
|
|
result = to_timedelta(arr, unit="ns", errors="coerce")
|
|
expected = to_timedelta([1, 2, pd.NaT], unit="ns")
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_to_timedelta_ignore_strings_unit(self):
|
|
arr = np.array([1, 2, "error"], dtype=object)
|
|
result = to_timedelta(arr, unit="ns", errors="ignore")
|
|
tm.assert_numpy_array_equal(result, arr)
|
|
|
|
@pytest.mark.parametrize(
|
|
"expected_val, result_val", [[timedelta(days=2), 2], [None, None]]
|
|
)
|
|
def test_to_timedelta_nullable_int64_dtype(self, expected_val, result_val):
|
|
# GH 35574
|
|
expected = Series([timedelta(days=1), expected_val])
|
|
result = to_timedelta(Series([1, result_val], dtype="Int64"), unit="days")
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
("input", "expected"),
|
|
[
|
|
("8:53:08.71800000001", "8:53:08.718"),
|
|
("8:53:08.718001", "8:53:08.718001"),
|
|
("8:53:08.7180000001", "8:53:08.7180000001"),
|
|
("-8:53:08.71800000001", "-8:53:08.718"),
|
|
("8:53:08.7180000089", "8:53:08.718000008"),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("func", [pd.Timedelta, to_timedelta])
|
|
def test_to_timedelta_precision_over_nanos(self, input, expected, func):
|
|
# GH: 36738
|
|
expected = pd.Timedelta(expected)
|
|
result = func(input)
|
|
assert result == expected
|
|
|
|
def test_to_timedelta_zerodim(self, fixed_now_ts):
|
|
# ndarray.item() incorrectly returns int for dt64[ns] and td64[ns]
|
|
dt64 = fixed_now_ts.to_datetime64()
|
|
arg = np.array(dt64)
|
|
|
|
msg = (
|
|
"Value must be Timedelta, string, integer, float, timedelta "
|
|
"or convertible, not datetime64"
|
|
)
|
|
with pytest.raises(ValueError, match=msg):
|
|
to_timedelta(arg)
|
|
|
|
arg2 = arg.view("m8[ns]")
|
|
result = to_timedelta(arg2)
|
|
assert isinstance(result, pd.Timedelta)
|
|
assert result.value == dt64.view("i8")
|