103 lines
3.2 KiB
Python
103 lines
3.2 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
from pandas._libs import lib
|
|
|
|
from pandas import (
|
|
DataFrame,
|
|
Series,
|
|
_testing as tm,
|
|
)
|
|
|
|
|
|
@pytest.mark.filterwarnings("ignore:Falling back")
|
|
def test_string_array(nullable_string_dtype, any_string_method):
|
|
method_name, args, kwargs = any_string_method
|
|
|
|
data = ["a", "bb", np.nan, "ccc"]
|
|
a = Series(data, dtype=object)
|
|
b = Series(data, dtype=nullable_string_dtype)
|
|
|
|
if method_name == "decode":
|
|
with pytest.raises(TypeError, match="a bytes-like object is required"):
|
|
getattr(b.str, method_name)(*args, **kwargs)
|
|
return
|
|
|
|
expected = getattr(a.str, method_name)(*args, **kwargs)
|
|
result = getattr(b.str, method_name)(*args, **kwargs)
|
|
|
|
if isinstance(expected, Series):
|
|
if expected.dtype == "object" and lib.is_string_array(
|
|
expected.dropna().values,
|
|
):
|
|
assert result.dtype == nullable_string_dtype
|
|
result = result.astype(object)
|
|
|
|
elif expected.dtype == "object" and lib.is_bool_array(
|
|
expected.values, skipna=True
|
|
):
|
|
assert result.dtype == "boolean"
|
|
result = result.astype(object)
|
|
|
|
elif expected.dtype == "bool":
|
|
assert result.dtype == "boolean"
|
|
result = result.astype("bool")
|
|
|
|
elif expected.dtype == "float" and expected.isna().any():
|
|
assert result.dtype == "Int64"
|
|
result = result.astype("float")
|
|
|
|
elif isinstance(expected, DataFrame):
|
|
columns = expected.select_dtypes(include="object").columns
|
|
assert all(result[columns].dtypes == nullable_string_dtype)
|
|
result[columns] = result[columns].astype(object)
|
|
tm.assert_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"method,expected",
|
|
[
|
|
("count", [2, None]),
|
|
("find", [0, None]),
|
|
("index", [0, None]),
|
|
("rindex", [2, None]),
|
|
],
|
|
)
|
|
def test_string_array_numeric_integer_array(nullable_string_dtype, method, expected):
|
|
s = Series(["aba", None], dtype=nullable_string_dtype)
|
|
result = getattr(s.str, method)("a")
|
|
expected = Series(expected, dtype="Int64")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"method,expected",
|
|
[
|
|
("isdigit", [False, None, True]),
|
|
("isalpha", [True, None, False]),
|
|
("isalnum", [True, None, True]),
|
|
("isnumeric", [False, None, True]),
|
|
],
|
|
)
|
|
def test_string_array_boolean_array(nullable_string_dtype, method, expected):
|
|
s = Series(["a", None, "1"], dtype=nullable_string_dtype)
|
|
result = getattr(s.str, method)()
|
|
expected = Series(expected, dtype="boolean")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_string_array_extract(nullable_string_dtype):
|
|
# https://github.com/pandas-dev/pandas/issues/30969
|
|
# Only expand=False & multiple groups was failing
|
|
|
|
a = Series(["a1", "b2", "cc"], dtype=nullable_string_dtype)
|
|
b = Series(["a1", "b2", "cc"], dtype="object")
|
|
pat = r"(\w)(\d)"
|
|
|
|
result = a.str.extract(pat, expand=False)
|
|
expected = b.str.extract(pat, expand=False)
|
|
assert all(result.dtypes == nullable_string_dtype)
|
|
|
|
result = result.astype(object)
|
|
tm.assert_equal(result, expected)
|