aoc-2022/venv/Lib/site-packages/pandas/tests/interchange/test_impl.py

207 lines
6.0 KiB
Python

from datetime import datetime
import random
import numpy as np
import pytest
from pandas._libs.tslibs import iNaT
import pandas.util._test_decorators as td
import pandas as pd
import pandas._testing as tm
from pandas.core.interchange.column import PandasColumn
from pandas.core.interchange.dataframe_protocol import (
ColumnNullType,
DtypeKind,
)
from pandas.core.interchange.from_dataframe import from_dataframe
test_data_categorical = {
"ordered": pd.Categorical(list("testdata") * 30, ordered=True),
"unordered": pd.Categorical(list("testdata") * 30, ordered=False),
}
NCOLS, NROWS = 100, 200
def _make_data(make_one):
return {
f"col{int((i - NCOLS / 2) % NCOLS + 1)}": [make_one() for _ in range(NROWS)]
for i in range(NCOLS)
}
int_data = _make_data(lambda: random.randint(-100, 100))
uint_data = _make_data(lambda: random.randint(1, 100))
bool_data = _make_data(lambda: random.choice([True, False]))
float_data = _make_data(lambda: random.random())
datetime_data = _make_data(
lambda: datetime(
year=random.randint(1900, 2100),
month=random.randint(1, 12),
day=random.randint(1, 20),
)
)
string_data = {
"separator data": [
"abC|DeF,Hik",
"234,3245.67",
"gSaf,qWer|Gre",
"asd3,4sad|",
np.NaN,
]
}
@pytest.mark.parametrize("data", [("ordered", True), ("unordered", False)])
def test_categorical_dtype(data):
df = pd.DataFrame({"A": (test_data_categorical[data[0]])})
col = df.__dataframe__().get_column_by_name("A")
assert col.dtype[0] == DtypeKind.CATEGORICAL
assert col.null_count == 0
assert col.describe_null == (ColumnNullType.USE_SENTINEL, -1)
assert col.num_chunks() == 1
desc_cat = col.describe_categorical
assert desc_cat["is_ordered"] == data[1]
assert desc_cat["is_dictionary"] is True
assert isinstance(desc_cat["categories"], PandasColumn)
tm.assert_series_equal(
desc_cat["categories"]._col, pd.Series(["a", "d", "e", "s", "t"])
)
tm.assert_frame_equal(df, from_dataframe(df.__dataframe__()))
@pytest.mark.parametrize(
"data", [int_data, uint_data, float_data, bool_data, datetime_data]
)
def test_dataframe(data):
df = pd.DataFrame(data)
df2 = df.__dataframe__()
assert df2.num_columns() == NCOLS
assert df2.num_rows() == NROWS
assert list(df2.column_names()) == list(data.keys())
indices = (0, 2)
names = tuple(list(data.keys())[idx] for idx in indices)
result = from_dataframe(df2.select_columns(indices))
expected = from_dataframe(df2.select_columns_by_name(names))
tm.assert_frame_equal(result, expected)
assert isinstance(result.attrs["_INTERCHANGE_PROTOCOL_BUFFERS"], list)
assert isinstance(expected.attrs["_INTERCHANGE_PROTOCOL_BUFFERS"], list)
def test_missing_from_masked():
df = pd.DataFrame(
{
"x": np.array([1, 2, 3, 4, 0]),
"y": np.array([1.5, 2.5, 3.5, 4.5, 0]),
"z": np.array([True, False, True, True, True]),
}
)
df2 = df.__dataframe__()
rng = np.random.RandomState(42)
dict_null = {col: rng.randint(low=0, high=len(df)) for col in df.columns}
for col, num_nulls in dict_null.items():
null_idx = df.index[
rng.choice(np.arange(len(df)), size=num_nulls, replace=False)
]
df.loc[null_idx, col] = None
df2 = df.__dataframe__()
assert df2.get_column_by_name("x").null_count == dict_null["x"]
assert df2.get_column_by_name("y").null_count == dict_null["y"]
assert df2.get_column_by_name("z").null_count == dict_null["z"]
@pytest.mark.parametrize(
"data",
[
{"x": [1.5, 2.5, 3.5], "y": [9.2, 10.5, 11.8]},
{"x": [1, 2, 0], "y": [9.2, 10.5, 11.8]},
{
"x": np.array([True, True, False]),
"y": np.array([1, 2, 0]),
"z": np.array([9.2, 10.5, 11.8]),
},
],
)
def test_mixed_data(data):
df = pd.DataFrame(data)
df2 = df.__dataframe__()
for col_name in df.columns:
assert df2.get_column_by_name(col_name).null_count == 0
def test_mixed_missing():
df = pd.DataFrame(
{
"x": np.array([True, None, False, None, True]),
"y": np.array([None, 2, None, 1, 2]),
"z": np.array([9.2, 10.5, None, 11.8, None]),
}
)
df2 = df.__dataframe__()
for col_name in df.columns:
assert df2.get_column_by_name(col_name).null_count == 2
def test_string():
test_str_data = string_data["separator data"] + [""]
df = pd.DataFrame({"A": test_str_data})
col = df.__dataframe__().get_column_by_name("A")
assert col.size() == 6
assert col.null_count == 1
assert col.dtype[0] == DtypeKind.STRING
assert col.describe_null == (ColumnNullType.USE_BYTEMASK, 0)
df_sliced = df[1:]
col = df_sliced.__dataframe__().get_column_by_name("A")
assert col.size() == 5
assert col.null_count == 1
assert col.dtype[0] == DtypeKind.STRING
assert col.describe_null == (ColumnNullType.USE_BYTEMASK, 0)
def test_nonstring_object():
df = pd.DataFrame({"A": ["a", 10, 1.0, ()]})
col = df.__dataframe__().get_column_by_name("A")
with pytest.raises(NotImplementedError, match="not supported yet"):
col.dtype
def test_datetime():
df = pd.DataFrame({"A": [pd.Timestamp("2022-01-01"), pd.NaT]})
col = df.__dataframe__().get_column_by_name("A")
assert col.size() == 2
assert col.null_count == 1
assert col.dtype[0] == DtypeKind.DATETIME
assert col.describe_null == (ColumnNullType.USE_SENTINEL, iNaT)
tm.assert_frame_equal(df, from_dataframe(df.__dataframe__()))
@td.skip_if_np_lt("1.23")
def test_categorical_to_numpy_dlpack():
# https://github.com/pandas-dev/pandas/issues/48393
df = pd.DataFrame({"A": pd.Categorical(["a", "b", "a"])})
col = df.__dataframe__().get_column_by_name("A")
result = np.from_dlpack(col.get_buffers()["data"][0])
expected = np.array([0, 1, 0], dtype="int8")
tm.assert_numpy_array_equal(result, expected)