aoc-2022/venv/Lib/site-packages/pandas/tests/indexing/multiindex/test_setitem.py

527 lines
17 KiB
Python

import numpy as np
import pytest
from pandas.errors import SettingWithCopyError
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
DataFrame,
MultiIndex,
Series,
Timestamp,
date_range,
isna,
notna,
)
import pandas._testing as tm
def assert_equal(a, b):
assert a == b
class TestMultiIndexSetItem:
def check(self, target, indexers, value, compare_fn=assert_equal, expected=None):
target.loc[indexers] = value
result = target.loc[indexers]
if expected is None:
expected = value
compare_fn(result, expected)
def test_setitem_multiindex(self):
# GH#7190
cols = ["A", "w", "l", "a", "x", "X", "d", "profit"]
index = MultiIndex.from_product(
[np.arange(0, 100), np.arange(0, 80)], names=["time", "firm"]
)
t, n = 0, 2
df = DataFrame(
np.nan,
columns=cols,
index=index,
)
self.check(target=df, indexers=((t, n), "X"), value=0)
df = DataFrame(-999, columns=cols, index=index)
self.check(target=df, indexers=((t, n), "X"), value=1)
df = DataFrame(columns=cols, index=index)
self.check(target=df, indexers=((t, n), "X"), value=2)
# gh-7218: assigning with 0-dim arrays
df = DataFrame(-999, columns=cols, index=index)
self.check(
target=df,
indexers=((t, n), "X"),
value=np.array(3),
expected=3,
)
def test_setitem_multiindex2(self):
# GH#5206
df = DataFrame(
np.arange(25).reshape(5, 5), columns="A,B,C,D,E".split(","), dtype=float
)
df["F"] = 99
row_selection = df["A"] % 2 == 0
col_selection = ["B", "C"]
df.loc[row_selection, col_selection] = df["F"]
output = DataFrame(99.0, index=[0, 2, 4], columns=["B", "C"])
tm.assert_frame_equal(df.loc[row_selection, col_selection], output)
self.check(
target=df,
indexers=(row_selection, col_selection),
value=df["F"],
compare_fn=tm.assert_frame_equal,
expected=output,
)
def test_setitem_multiindex3(self):
# GH#11372
idx = MultiIndex.from_product(
[["A", "B", "C"], date_range("2015-01-01", "2015-04-01", freq="MS")]
)
cols = MultiIndex.from_product(
[["foo", "bar"], date_range("2016-01-01", "2016-02-01", freq="MS")]
)
df = DataFrame(np.random.random((12, 4)), index=idx, columns=cols)
subidx = MultiIndex.from_tuples(
[("A", Timestamp("2015-01-01")), ("A", Timestamp("2015-02-01"))]
)
subcols = MultiIndex.from_tuples(
[("foo", Timestamp("2016-01-01")), ("foo", Timestamp("2016-02-01"))]
)
vals = DataFrame(np.random.random((2, 2)), index=subidx, columns=subcols)
self.check(
target=df,
indexers=(subidx, subcols),
value=vals,
compare_fn=tm.assert_frame_equal,
)
# set all columns
vals = DataFrame(np.random.random((2, 4)), index=subidx, columns=cols)
self.check(
target=df,
indexers=(subidx, slice(None, None, None)),
value=vals,
compare_fn=tm.assert_frame_equal,
)
# identity
copy = df.copy()
self.check(
target=df,
indexers=(df.index, df.columns),
value=df,
compare_fn=tm.assert_frame_equal,
expected=copy,
)
# TODO(ArrayManager) df.loc["bar"] *= 2 doesn't raise an error but results in
# all NaNs -> doesn't work in the "split" path (also for BlockManager actually)
@td.skip_array_manager_not_yet_implemented
def test_multiindex_setitem(self):
# GH 3738
# setting with a multi-index right hand side
arrays = [
np.array(["bar", "bar", "baz", "qux", "qux", "bar"]),
np.array(["one", "two", "one", "one", "two", "one"]),
np.arange(0, 6, 1),
]
df_orig = DataFrame(
np.random.randn(6, 3), index=arrays, columns=["A", "B", "C"]
).sort_index()
expected = df_orig.loc[["bar"]] * 2
df = df_orig.copy()
df.loc[["bar"]] *= 2
tm.assert_frame_equal(df.loc[["bar"]], expected)
# raise because these have differing levels
msg = "cannot align on a multi-index with out specifying the join levels"
with pytest.raises(TypeError, match=msg):
df.loc["bar"] *= 2
def test_multiindex_setitem2(self):
# from SO
# https://stackoverflow.com/questions/24572040/pandas-access-the-level-of-multiindex-for-inplace-operation
df_orig = DataFrame.from_dict(
{
"price": {
("DE", "Coal", "Stock"): 2,
("DE", "Gas", "Stock"): 4,
("DE", "Elec", "Demand"): 1,
("FR", "Gas", "Stock"): 5,
("FR", "Solar", "SupIm"): 0,
("FR", "Wind", "SupIm"): 0,
}
}
)
df_orig.index = MultiIndex.from_tuples(
df_orig.index, names=["Sit", "Com", "Type"]
)
expected = df_orig.copy()
expected.iloc[[0, 2, 3]] *= 2
idx = pd.IndexSlice
df = df_orig.copy()
df.loc[idx[:, :, "Stock"], :] *= 2
tm.assert_frame_equal(df, expected)
df = df_orig.copy()
df.loc[idx[:, :, "Stock"], "price"] *= 2
tm.assert_frame_equal(df, expected)
def test_multiindex_assignment(self):
# GH3777 part 2
# mixed dtype
df = DataFrame(
np.random.randint(5, 10, size=9).reshape(3, 3),
columns=list("abc"),
index=[[4, 4, 8], [8, 10, 12]],
)
df["d"] = np.nan
arr = np.array([0.0, 1.0])
df.loc[4, "d"] = arr
tm.assert_series_equal(df.loc[4, "d"], Series(arr, index=[8, 10], name="d"))
def test_multiindex_assignment_single_dtype(self, using_copy_on_write):
# GH3777 part 2b
# single dtype
arr = np.array([0.0, 1.0])
df = DataFrame(
np.random.randint(5, 10, size=9).reshape(3, 3),
columns=list("abc"),
index=[[4, 4, 8], [8, 10, 12]],
dtype=np.int64,
)
view = df["c"].iloc[:2].values
# arr can be losslessly cast to int, so this setitem is inplace
df.loc[4, "c"] = arr
exp = Series(arr, index=[8, 10], name="c", dtype="int64")
result = df.loc[4, "c"]
tm.assert_series_equal(result, exp)
# extra check for inplace-ness
if not using_copy_on_write:
tm.assert_numpy_array_equal(view, exp.values)
# arr + 0.5 cannot be cast losslessly to int, so we upcast
df.loc[4, "c"] = arr + 0.5
result = df.loc[4, "c"]
exp = exp + 0.5
tm.assert_series_equal(result, exp)
# scalar ok
df.loc[4, "c"] = 10
exp = Series(10, index=[8, 10], name="c", dtype="float64")
tm.assert_series_equal(df.loc[4, "c"], exp)
# invalid assignments
msg = "Must have equal len keys and value when setting with an iterable"
with pytest.raises(ValueError, match=msg):
df.loc[4, "c"] = [0, 1, 2, 3]
with pytest.raises(ValueError, match=msg):
df.loc[4, "c"] = [0]
# But with a length-1 listlike column indexer this behaves like
# `df.loc[4, "c"] = 0
df.loc[4, ["c"]] = [0]
assert (df.loc[4, "c"] == 0).all()
def test_groupby_example(self):
# groupby example
NUM_ROWS = 100
NUM_COLS = 10
col_names = ["A" + num for num in map(str, np.arange(NUM_COLS).tolist())]
index_cols = col_names[:5]
df = DataFrame(
np.random.randint(5, size=(NUM_ROWS, NUM_COLS)),
dtype=np.int64,
columns=col_names,
)
df = df.set_index(index_cols).sort_index()
grp = df.groupby(level=index_cols[:4])
df["new_col"] = np.nan
# we are actually operating on a copy here
# but in this case, that's ok
for name, df2 in grp:
new_vals = np.arange(df2.shape[0])
df.loc[name, "new_col"] = new_vals
def test_series_setitem(self, multiindex_year_month_day_dataframe_random_data):
ymd = multiindex_year_month_day_dataframe_random_data
s = ymd["A"]
s[2000, 3] = np.nan
assert isna(s.values[42:65]).all()
assert notna(s.values[:42]).all()
assert notna(s.values[65:]).all()
s[2000, 3, 10] = np.nan
assert isna(s.iloc[49])
with pytest.raises(KeyError, match="49"):
# GH#33355 dont fall-back to positional when leading level is int
s[49]
def test_frame_getitem_setitem_boolean(self, multiindex_dataframe_random_data):
frame = multiindex_dataframe_random_data
df = frame.T.copy()
values = df.values
result = df[df > 0]
expected = df.where(df > 0)
tm.assert_frame_equal(result, expected)
df[df > 0] = 5
values[values > 0] = 5
tm.assert_almost_equal(df.values, values)
df[df == 5] = 0
values[values == 5] = 0
tm.assert_almost_equal(df.values, values)
# a df that needs alignment first
df[df[:-1] < 0] = 2
np.putmask(values[:-1], values[:-1] < 0, 2)
tm.assert_almost_equal(df.values, values)
with pytest.raises(TypeError, match="boolean values only"):
df[df * 0] = 2
def test_frame_getitem_setitem_multislice(self):
levels = [["t1", "t2"], ["a", "b", "c"]]
codes = [[0, 0, 0, 1, 1], [0, 1, 2, 0, 1]]
midx = MultiIndex(codes=codes, levels=levels, names=[None, "id"])
df = DataFrame({"value": [1, 2, 3, 7, 8]}, index=midx)
result = df.loc[:, "value"]
tm.assert_series_equal(df["value"], result)
result = df.loc[df.index[1:3], "value"]
tm.assert_series_equal(df["value"][1:3], result)
result = df.loc[:, :]
tm.assert_frame_equal(df, result)
result = df
df.loc[:, "value"] = 10
result["value"] = 10
tm.assert_frame_equal(df, result)
df.loc[:, :] = 10
tm.assert_frame_equal(df, result)
def test_frame_setitem_multi_column(self):
df = DataFrame(
np.random.randn(10, 4), columns=[["a", "a", "b", "b"], [0, 1, 0, 1]]
)
cp = df.copy()
cp["a"] = cp["b"]
tm.assert_frame_equal(cp["a"], cp["b"])
# set with ndarray
cp = df.copy()
cp["a"] = cp["b"].values
tm.assert_frame_equal(cp["a"], cp["b"])
def test_frame_setitem_multi_column2(self):
# ---------------------------------------
# GH#1803
columns = MultiIndex.from_tuples([("A", "1"), ("A", "2"), ("B", "1")])
df = DataFrame(index=[1, 3, 5], columns=columns)
# Works, but adds a column instead of updating the two existing ones
df["A"] = 0.0 # Doesn't work
assert (df["A"].values == 0).all()
# it broadcasts
df["B", "1"] = [1, 2, 3]
df["A"] = df["B", "1"]
sliced_a1 = df["A", "1"]
sliced_a2 = df["A", "2"]
sliced_b1 = df["B", "1"]
tm.assert_series_equal(sliced_a1, sliced_b1, check_names=False)
tm.assert_series_equal(sliced_a2, sliced_b1, check_names=False)
assert sliced_a1.name == ("A", "1")
assert sliced_a2.name == ("A", "2")
assert sliced_b1.name == ("B", "1")
def test_loc_getitem_tuple_plus_columns(
self, multiindex_year_month_day_dataframe_random_data
):
# GH #1013
ymd = multiindex_year_month_day_dataframe_random_data
df = ymd[:5]
result = df.loc[(2000, 1, 6), ["A", "B", "C"]]
expected = df.loc[2000, 1, 6][["A", "B", "C"]]
tm.assert_series_equal(result, expected)
def test_loc_getitem_setitem_slice_integers(self, frame_or_series):
index = MultiIndex(
levels=[[0, 1, 2], [0, 2]], codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]
)
obj = DataFrame(
np.random.randn(len(index), 4), index=index, columns=["a", "b", "c", "d"]
)
obj = tm.get_obj(obj, frame_or_series)
res = obj.loc[1:2]
exp = obj.reindex(obj.index[2:])
tm.assert_equal(res, exp)
obj.loc[1:2] = 7
assert (obj.loc[1:2] == 7).values.all()
def test_setitem_change_dtype(self, multiindex_dataframe_random_data):
frame = multiindex_dataframe_random_data
dft = frame.T
s = dft["foo", "two"]
dft["foo", "two"] = s > s.median()
tm.assert_series_equal(dft["foo", "two"], s > s.median())
# assert isinstance(dft._data.blocks[1].items, MultiIndex)
reindexed = dft.reindex(columns=[("foo", "two")])
tm.assert_series_equal(reindexed["foo", "two"], s > s.median())
def test_set_column_scalar_with_loc(
self, multiindex_dataframe_random_data, using_copy_on_write
):
frame = multiindex_dataframe_random_data
subset = frame.index[[1, 4, 5]]
frame.loc[subset] = 99
assert (frame.loc[subset].values == 99).all()
frame_original = frame.copy()
col = frame["B"]
col[subset] = 97
if using_copy_on_write:
# chained setitem doesn't work with CoW
tm.assert_frame_equal(frame, frame_original)
else:
assert (frame.loc[subset, "B"] == 97).all()
def test_nonunique_assignment_1750(self):
df = DataFrame(
[[1, 1, "x", "X"], [1, 1, "y", "Y"], [1, 2, "z", "Z"]], columns=list("ABCD")
)
df = df.set_index(["A", "B"])
mi = MultiIndex.from_tuples([(1, 1)])
df.loc[mi, "C"] = "_"
assert (df.xs((1, 1))["C"] == "_").all()
def test_astype_assignment_with_dups(self):
# GH 4686
# assignment with dups that has a dtype change
cols = MultiIndex.from_tuples([("A", "1"), ("B", "1"), ("A", "2")])
df = DataFrame(np.arange(3).reshape((1, 3)), columns=cols, dtype=object)
index = df.index.copy()
df["A"] = df["A"].astype(np.float64)
tm.assert_index_equal(df.index, index)
def test_setitem_nonmonotonic(self):
# https://github.com/pandas-dev/pandas/issues/31449
index = MultiIndex.from_tuples(
[("a", "c"), ("b", "x"), ("a", "d")], names=["l1", "l2"]
)
df = DataFrame(data=[0, 1, 2], index=index, columns=["e"])
df.loc["a", "e"] = np.arange(99, 101, dtype="int64")
expected = DataFrame({"e": [99, 1, 100]}, index=index)
tm.assert_frame_equal(df, expected)
class TestSetitemWithExpansionMultiIndex:
def test_setitem_new_column_mixed_depth(self):
arrays = [
["a", "top", "top", "routine1", "routine1", "routine2"],
["", "OD", "OD", "result1", "result2", "result1"],
["", "wx", "wy", "", "", ""],
]
tuples = sorted(zip(*arrays))
index = MultiIndex.from_tuples(tuples)
df = DataFrame(np.random.randn(4, 6), columns=index)
result = df.copy()
expected = df.copy()
result["b"] = [1, 2, 3, 4]
expected["b", "", ""] = [1, 2, 3, 4]
tm.assert_frame_equal(result, expected)
def test_setitem_new_column_all_na(self):
# GH#1534
mix = MultiIndex.from_tuples([("1a", "2a"), ("1a", "2b"), ("1a", "2c")])
df = DataFrame([[1, 2], [3, 4], [5, 6]], index=mix)
s = Series({(1, 1): 1, (1, 2): 2})
df["new"] = s
assert df["new"].isna().all()
@td.skip_array_manager_invalid_test # df["foo"] select multiple columns -> .values
# is not a view
def test_frame_setitem_view_direct(multiindex_dataframe_random_data):
# this works because we are modifying the underlying array
# really a no-no
df = multiindex_dataframe_random_data.T
df["foo"].values[:] = 0
assert (df["foo"].values == 0).all()
def test_frame_setitem_copy_raises(
multiindex_dataframe_random_data, using_copy_on_write
):
# will raise/warn as its chained assignment
df = multiindex_dataframe_random_data.T
if using_copy_on_write:
# TODO(CoW) it would be nice if this could still warn/raise
df["foo"]["one"] = 2
else:
msg = "A value is trying to be set on a copy of a slice from a DataFrame"
with pytest.raises(SettingWithCopyError, match=msg):
df["foo"]["one"] = 2
def test_frame_setitem_copy_no_write(
multiindex_dataframe_random_data, using_copy_on_write
):
frame = multiindex_dataframe_random_data.T
expected = frame
df = frame.copy()
if using_copy_on_write:
df["foo"]["one"] = 2
else:
msg = "A value is trying to be set on a copy of a slice from a DataFrame"
with pytest.raises(SettingWithCopyError, match=msg):
df["foo"]["one"] = 2
result = df
tm.assert_frame_equal(result, expected)