aoc-2022/venv/Lib/site-packages/pandas/tests/indexing/interval/test_interval.py

176 lines
5.8 KiB
Python

import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
IntervalIndex,
Series,
)
import pandas._testing as tm
class TestIntervalIndex:
@pytest.fixture
def series_with_interval_index(self):
return Series(np.arange(5), IntervalIndex.from_breaks(np.arange(6)))
def test_getitem_with_scalar(self, series_with_interval_index, indexer_sl):
ser = series_with_interval_index.copy()
expected = ser.iloc[:3]
tm.assert_series_equal(expected, indexer_sl(ser)[:3])
tm.assert_series_equal(expected, indexer_sl(ser)[:2.5])
tm.assert_series_equal(expected, indexer_sl(ser)[0.1:2.5])
if indexer_sl is tm.loc:
tm.assert_series_equal(expected, ser.loc[-1:3])
expected = ser.iloc[1:4]
tm.assert_series_equal(expected, indexer_sl(ser)[[1.5, 2.5, 3.5]])
tm.assert_series_equal(expected, indexer_sl(ser)[[2, 3, 4]])
tm.assert_series_equal(expected, indexer_sl(ser)[[1.5, 3, 4]])
expected = ser.iloc[2:5]
tm.assert_series_equal(expected, indexer_sl(ser)[ser >= 2])
@pytest.mark.parametrize("direction", ["increasing", "decreasing"])
def test_getitem_nonoverlapping_monotonic(self, direction, closed, indexer_sl):
tpls = [(0, 1), (2, 3), (4, 5)]
if direction == "decreasing":
tpls = tpls[::-1]
idx = IntervalIndex.from_tuples(tpls, closed=closed)
ser = Series(list("abc"), idx)
for key, expected in zip(idx.left, ser):
if idx.closed_left:
assert indexer_sl(ser)[key] == expected
else:
with pytest.raises(KeyError, match=str(key)):
indexer_sl(ser)[key]
for key, expected in zip(idx.right, ser):
if idx.closed_right:
assert indexer_sl(ser)[key] == expected
else:
with pytest.raises(KeyError, match=str(key)):
indexer_sl(ser)[key]
for key, expected in zip(idx.mid, ser):
assert indexer_sl(ser)[key] == expected
def test_getitem_non_matching(self, series_with_interval_index, indexer_sl):
ser = series_with_interval_index.copy()
# this is a departure from our current
# indexing scheme, but simpler
with pytest.raises(KeyError, match=r"\[-1\] not in index"):
indexer_sl(ser)[[-1, 3, 4, 5]]
with pytest.raises(KeyError, match=r"\[-1\] not in index"):
indexer_sl(ser)[[-1, 3]]
@pytest.mark.slow
def test_loc_getitem_large_series(self):
ser = Series(
np.arange(1000000), index=IntervalIndex.from_breaks(np.arange(1000001))
)
result1 = ser.loc[:80000]
result2 = ser.loc[0:80000]
result3 = ser.loc[0:80000:1]
tm.assert_series_equal(result1, result2)
tm.assert_series_equal(result1, result3)
def test_loc_getitem_frame(self):
# CategoricalIndex with IntervalIndex categories
df = DataFrame({"A": range(10)})
ser = pd.cut(df.A, 5)
df["B"] = ser
df = df.set_index("B")
result = df.loc[4]
expected = df.iloc[4:6]
tm.assert_frame_equal(result, expected)
with pytest.raises(KeyError, match="10"):
df.loc[10]
# single list-like
result = df.loc[[4]]
expected = df.iloc[4:6]
tm.assert_frame_equal(result, expected)
# non-unique
result = df.loc[[4, 5]]
expected = df.take([4, 5, 4, 5])
tm.assert_frame_equal(result, expected)
with pytest.raises(KeyError, match=r"None of \[\[10\]\] are"):
df.loc[[10]]
# partial missing
with pytest.raises(KeyError, match=r"\[10\] not in index"):
df.loc[[10, 4]]
def test_getitem_interval_with_nans(self, frame_or_series, indexer_sl):
# GH#41831
index = IntervalIndex([np.nan, np.nan])
key = index[:-1]
obj = frame_or_series(range(2), index=index)
if frame_or_series is DataFrame and indexer_sl is tm.setitem:
obj = obj.T
result = indexer_sl(obj)[key]
expected = obj
tm.assert_equal(result, expected)
class TestIntervalIndexInsideMultiIndex:
def test_mi_intervalindex_slicing_with_scalar(self):
# GH#27456
ii = IntervalIndex.from_arrays(
[0, 1, 10, 11, 0, 1, 10, 11], [1, 2, 11, 12, 1, 2, 11, 12], name="MP"
)
idx = pd.MultiIndex.from_arrays(
[
pd.Index(["FC", "FC", "FC", "FC", "OWNER", "OWNER", "OWNER", "OWNER"]),
pd.Index(
["RID1", "RID1", "RID2", "RID2", "RID1", "RID1", "RID2", "RID2"]
),
ii,
]
)
idx.names = ["Item", "RID", "MP"]
df = DataFrame({"value": [1, 2, 3, 4, 5, 6, 7, 8]})
df.index = idx
query_df = DataFrame(
{
"Item": ["FC", "OWNER", "FC", "OWNER", "OWNER"],
"RID": ["RID1", "RID1", "RID1", "RID2", "RID2"],
"MP": [0.2, 1.5, 1.6, 11.1, 10.9],
}
)
query_df = query_df.sort_index()
idx = pd.MultiIndex.from_arrays([query_df.Item, query_df.RID, query_df.MP])
query_df.index = idx
result = df.value.loc[query_df.index]
# the IntervalIndex level is indexed with floats, which map to
# the intervals containing them. Matching the behavior we would get
# with _only_ an IntervalIndex, we get an IntervalIndex level back.
sliced_level = ii.take([0, 1, 1, 3, 2])
expected_index = pd.MultiIndex.from_arrays(
[idx.get_level_values(0), idx.get_level_values(1), sliced_level]
)
expected = Series([1, 6, 2, 8, 7], index=expected_index, name="value")
tm.assert_series_equal(result, expected)