aoc-2022/venv/Lib/site-packages/pandas/tests/groupby/test_function.py

1604 lines
52 KiB
Python

import builtins
from io import StringIO
import numpy as np
import pytest
from pandas._libs import lib
from pandas.errors import UnsupportedFunctionCall
import pandas as pd
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
Timestamp,
date_range,
)
import pandas._testing as tm
import pandas.core.nanops as nanops
from pandas.tests.groupby import get_groupby_method_args
from pandas.util import _test_decorators as td
@pytest.fixture(
params=[np.int32, np.int64, np.float32, np.float64, "Int64", "Float64"],
ids=["np.int32", "np.int64", "np.float32", "np.float64", "Int64", "Float64"],
)
def dtypes_for_minmax(request):
"""
Fixture of dtypes with min and max values used for testing
cummin and cummax
"""
dtype = request.param
np_type = dtype
if dtype == "Int64":
np_type = np.int64
elif dtype == "Float64":
np_type = np.float64
min_val = (
np.iinfo(np_type).min
if np.dtype(np_type).kind == "i"
else np.finfo(np_type).min
)
max_val = (
np.iinfo(np_type).max
if np.dtype(np_type).kind == "i"
else np.finfo(np_type).max
)
return (dtype, min_val, max_val)
def test_intercept_builtin_sum():
s = Series([1.0, 2.0, np.nan, 3.0])
grouped = s.groupby([0, 1, 2, 2])
result = grouped.agg(builtins.sum)
result2 = grouped.apply(builtins.sum)
expected = grouped.sum()
tm.assert_series_equal(result, expected)
tm.assert_series_equal(result2, expected)
@pytest.mark.parametrize("f", [max, min, sum])
@pytest.mark.parametrize("keys", ["jim", ["jim", "joe"]]) # Single key # Multi-key
def test_builtins_apply(keys, f):
# see gh-8155
df = DataFrame(np.random.randint(1, 50, (1000, 2)), columns=["jim", "joe"])
df["jolie"] = np.random.randn(1000)
gb = df.groupby(keys)
fname = f.__name__
result = gb.apply(f)
ngroups = len(df.drop_duplicates(subset=keys))
assert_msg = f"invalid frame shape: {result.shape} (expected ({ngroups}, 3))"
assert result.shape == (ngroups, 3), assert_msg
npfunc = getattr(np, fname) # numpy's equivalent function
if f in [max, min]:
warn = FutureWarning
else:
warn = None
msg = "scalar (max|min) over the entire DataFrame"
with tm.assert_produces_warning(warn, match=msg, check_stacklevel=False):
# stacklevel can be thrown off because (i think) the stack
# goes through some of numpy's C code.
expected = gb.apply(npfunc)
tm.assert_frame_equal(result, expected)
with tm.assert_produces_warning(None):
expected2 = gb.apply(lambda x: npfunc(x, axis=0))
tm.assert_frame_equal(result, expected2)
if f != sum:
expected = gb.agg(fname).reset_index()
expected.set_index(keys, inplace=True, drop=False)
tm.assert_frame_equal(result, expected, check_dtype=False)
tm.assert_series_equal(getattr(result, fname)(), getattr(df, fname)())
class TestNumericOnly:
# make sure that we are passing thru kwargs to our agg functions
@pytest.fixture
def df(self):
# GH3668
# GH5724
df = DataFrame(
{
"group": [1, 1, 2],
"int": [1, 2, 3],
"float": [4.0, 5.0, 6.0],
"string": list("abc"),
"category_string": Series(list("abc")).astype("category"),
"category_int": [7, 8, 9],
"datetime": date_range("20130101", periods=3),
"datetimetz": date_range("20130101", periods=3, tz="US/Eastern"),
"timedelta": pd.timedelta_range("1 s", periods=3, freq="s"),
},
columns=[
"group",
"int",
"float",
"string",
"category_string",
"category_int",
"datetime",
"datetimetz",
"timedelta",
],
)
return df
@pytest.mark.parametrize("method", ["mean", "median"])
def test_averages(self, df, method):
# mean / median
expected_columns_numeric = Index(["int", "float", "category_int"])
gb = df.groupby("group")
expected = DataFrame(
{
"category_int": [7.5, 9],
"float": [4.5, 6.0],
"timedelta": [pd.Timedelta("1.5s"), pd.Timedelta("3s")],
"int": [1.5, 3],
"datetime": [
Timestamp("2013-01-01 12:00:00"),
Timestamp("2013-01-03 00:00:00"),
],
"datetimetz": [
Timestamp("2013-01-01 12:00:00", tz="US/Eastern"),
Timestamp("2013-01-03 00:00:00", tz="US/Eastern"),
],
},
index=Index([1, 2], name="group"),
columns=[
"int",
"float",
"category_int",
"datetime",
"datetimetz",
"timedelta",
],
)
with tm.assert_produces_warning(FutureWarning, match="Dropping invalid"):
result = getattr(gb, method)(numeric_only=False)
tm.assert_frame_equal(result.reindex_like(expected), expected)
expected_columns = expected.columns
self._check(df, method, expected_columns, expected_columns_numeric)
@pytest.mark.parametrize("method", ["min", "max"])
def test_extrema(self, df, method):
# TODO: min, max *should* handle
# categorical (ordered) dtype
expected_columns = Index(
[
"int",
"float",
"string",
"category_int",
"datetime",
"datetimetz",
"timedelta",
]
)
expected_columns_numeric = expected_columns
self._check(df, method, expected_columns, expected_columns_numeric)
@pytest.mark.parametrize("method", ["first", "last"])
def test_first_last(self, df, method):
expected_columns = Index(
[
"int",
"float",
"string",
"category_string",
"category_int",
"datetime",
"datetimetz",
"timedelta",
]
)
expected_columns_numeric = expected_columns
self._check(df, method, expected_columns, expected_columns_numeric)
@pytest.mark.parametrize("method", ["sum", "cumsum"])
def test_sum_cumsum(self, df, method):
expected_columns_numeric = Index(["int", "float", "category_int"])
expected_columns = Index(
["int", "float", "string", "category_int", "timedelta"]
)
if method == "cumsum":
# cumsum loses string
expected_columns = Index(["int", "float", "category_int", "timedelta"])
self._check(df, method, expected_columns, expected_columns_numeric)
@pytest.mark.parametrize("method", ["prod", "cumprod"])
def test_prod_cumprod(self, df, method):
expected_columns = Index(["int", "float", "category_int"])
expected_columns_numeric = expected_columns
self._check(df, method, expected_columns, expected_columns_numeric)
@pytest.mark.parametrize("method", ["cummin", "cummax"])
def test_cummin_cummax(self, df, method):
# like min, max, but don't include strings
expected_columns = Index(
["int", "float", "category_int", "datetime", "datetimetz", "timedelta"]
)
# GH#15561: numeric_only=False set by default like min/max
expected_columns_numeric = expected_columns
self._check(df, method, expected_columns, expected_columns_numeric)
def _check(self, df, method, expected_columns, expected_columns_numeric):
gb = df.groupby("group")
# cummin, cummax dont have numeric_only kwarg, always use False
warn = None
if method in ["cummin", "cummax"]:
# these dont have numeric_only kwarg, always use False
warn = FutureWarning
elif method in ["min", "max"]:
# these have numeric_only kwarg, but default to False
warn = FutureWarning
with tm.assert_produces_warning(
warn, match="Dropping invalid columns", raise_on_extra_warnings=False
):
result = getattr(gb, method)()
tm.assert_index_equal(result.columns, expected_columns_numeric)
# GH#41475 deprecated silently ignoring nuisance columns
warn = None
if len(expected_columns) < len(gb._obj_with_exclusions.columns):
warn = FutureWarning
with tm.assert_produces_warning(warn, match="Dropping invalid columns"):
result = getattr(gb, method)(numeric_only=False)
tm.assert_index_equal(result.columns, expected_columns)
class TestGroupByNonCythonPaths:
# GH#5610 non-cython calls should not include the grouper
# Tests for code not expected to go through cython paths.
@pytest.fixture
def df(self):
df = DataFrame(
[[1, 2, "foo"], [1, np.nan, "bar"], [3, np.nan, "baz"]],
columns=["A", "B", "C"],
)
return df
@pytest.fixture
def gb(self, df):
gb = df.groupby("A")
return gb
@pytest.fixture
def gni(self, df):
gni = df.groupby("A", as_index=False)
return gni
# TODO: non-unique columns, as_index=False
def test_idxmax(self, gb):
# object dtype so idxmax goes through _aggregate_item_by_item
# GH#5610
# non-cython calls should not include the grouper
expected = DataFrame([[0.0], [np.nan]], columns=["B"], index=[1, 3])
expected.index.name = "A"
msg = "The default value of numeric_only in DataFrameGroupBy.idxmax"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = gb.idxmax()
tm.assert_frame_equal(result, expected)
def test_idxmin(self, gb):
# object dtype so idxmax goes through _aggregate_item_by_item
# GH#5610
# non-cython calls should not include the grouper
expected = DataFrame([[0.0], [np.nan]], columns=["B"], index=[1, 3])
expected.index.name = "A"
msg = "The default value of numeric_only in DataFrameGroupBy.idxmin"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = gb.idxmin()
tm.assert_frame_equal(result, expected)
def test_mad(self, gb, gni):
# mad
expected = DataFrame([[0], [np.nan]], columns=["B"], index=[1, 3])
expected.index.name = "A"
with tm.assert_produces_warning(
FutureWarning, match="The 'mad' method is deprecated"
):
result = gb.mad()
tm.assert_frame_equal(result, expected)
expected = DataFrame([[1, 0.0], [3, np.nan]], columns=["A", "B"], index=[0, 1])
with tm.assert_produces_warning(
FutureWarning, match="The 'mad' method is deprecated"
):
result = gni.mad()
tm.assert_frame_equal(result, expected)
def test_describe(self, df, gb, gni):
# describe
expected_index = Index([1, 3], name="A")
expected_col = MultiIndex(
levels=[["B"], ["count", "mean", "std", "min", "25%", "50%", "75%", "max"]],
codes=[[0] * 8, list(range(8))],
)
expected = DataFrame(
[
[1.0, 2.0, np.nan, 2.0, 2.0, 2.0, 2.0, 2.0],
[0.0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
],
index=expected_index,
columns=expected_col,
)
result = gb.describe()
tm.assert_frame_equal(result, expected)
expected = pd.concat(
[
df[df.A == 1].describe().unstack().to_frame().T,
df[df.A == 3].describe().unstack().to_frame().T,
]
)
expected.index = Index([0, 1])
result = gni.describe()
tm.assert_frame_equal(result, expected)
def test_cython_api2():
# this takes the fast apply path
# cumsum (GH5614)
df = DataFrame([[1, 2, np.nan], [1, np.nan, 9], [3, 4, 9]], columns=["A", "B", "C"])
expected = DataFrame([[2, np.nan], [np.nan, 9], [4, 9]], columns=["B", "C"])
result = df.groupby("A").cumsum()
tm.assert_frame_equal(result, expected)
# GH 5755 - cumsum is a transformer and should ignore as_index
result = df.groupby("A", as_index=False).cumsum()
tm.assert_frame_equal(result, expected)
# GH 13994
result = df.groupby("A").cumsum(axis=1)
expected = df.cumsum(axis=1)
tm.assert_frame_equal(result, expected)
result = df.groupby("A").cumprod(axis=1)
expected = df.cumprod(axis=1)
tm.assert_frame_equal(result, expected)
def test_cython_median():
df = DataFrame(np.random.randn(1000))
df.values[::2] = np.nan
labels = np.random.randint(0, 50, size=1000).astype(float)
labels[::17] = np.nan
result = df.groupby(labels).median()
exp = df.groupby(labels).agg(nanops.nanmedian)
tm.assert_frame_equal(result, exp)
df = DataFrame(np.random.randn(1000, 5))
rs = df.groupby(labels).agg(np.median)
xp = df.groupby(labels).median()
tm.assert_frame_equal(rs, xp)
def test_median_empty_bins(observed):
df = DataFrame(np.random.randint(0, 44, 500))
grps = range(0, 55, 5)
bins = pd.cut(df[0], grps)
result = df.groupby(bins, observed=observed).median()
expected = df.groupby(bins, observed=observed).agg(lambda x: x.median())
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"dtype", ["int8", "int16", "int32", "int64", "float32", "float64", "uint64"]
)
@pytest.mark.parametrize(
"method,data",
[
("first", {"df": [{"a": 1, "b": 1}, {"a": 2, "b": 3}]}),
("last", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 4}]}),
("min", {"df": [{"a": 1, "b": 1}, {"a": 2, "b": 3}]}),
("max", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 4}]}),
("nth", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 4}], "args": [1]}),
("count", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 2}], "out_type": "int64"}),
],
)
def test_groupby_non_arithmetic_agg_types(dtype, method, data):
# GH9311, GH6620
df = DataFrame(
[{"a": 1, "b": 1}, {"a": 1, "b": 2}, {"a": 2, "b": 3}, {"a": 2, "b": 4}]
)
df["b"] = df.b.astype(dtype)
if "args" not in data:
data["args"] = []
if "out_type" in data:
out_type = data["out_type"]
else:
out_type = dtype
exp = data["df"]
df_out = DataFrame(exp)
df_out["b"] = df_out.b.astype(out_type)
df_out.set_index("a", inplace=True)
grpd = df.groupby("a")
t = getattr(grpd, method)(*data["args"])
tm.assert_frame_equal(t, df_out)
@pytest.mark.parametrize(
"i",
[
(
Timestamp("2011-01-15 12:50:28.502376"),
Timestamp("2011-01-20 12:50:28.593448"),
),
(24650000000000001, 24650000000000002),
],
)
def test_groupby_non_arithmetic_agg_int_like_precision(i):
# see gh-6620, gh-9311
df = DataFrame([{"a": 1, "b": i[0]}, {"a": 1, "b": i[1]}])
grp_exp = {
"first": {"expected": i[0]},
"last": {"expected": i[1]},
"min": {"expected": i[0]},
"max": {"expected": i[1]},
"nth": {"expected": i[1], "args": [1]},
"count": {"expected": 2},
}
for method, data in grp_exp.items():
if "args" not in data:
data["args"] = []
grouped = df.groupby("a")
res = getattr(grouped, method)(*data["args"])
assert res.iloc[0].b == data["expected"]
@pytest.mark.parametrize(
"func, values",
[
("idxmin", {"c_int": [0, 2], "c_float": [1, 3], "c_date": [1, 2]}),
("idxmax", {"c_int": [1, 3], "c_float": [0, 2], "c_date": [0, 3]}),
],
)
@pytest.mark.parametrize("numeric_only", [True, False])
@pytest.mark.filterwarnings("ignore:.*Select only valid:FutureWarning")
def test_idxmin_idxmax_returns_int_types(func, values, numeric_only):
# GH 25444
df = DataFrame(
{
"name": ["A", "A", "B", "B"],
"c_int": [1, 2, 3, 4],
"c_float": [4.02, 3.03, 2.04, 1.05],
"c_date": ["2019", "2018", "2016", "2017"],
}
)
df["c_date"] = pd.to_datetime(df["c_date"])
df["c_date_tz"] = df["c_date"].dt.tz_localize("US/Pacific")
df["c_timedelta"] = df["c_date"] - df["c_date"].iloc[0]
df["c_period"] = df["c_date"].dt.to_period("W")
df["c_Integer"] = df["c_int"].astype("Int64")
df["c_Floating"] = df["c_float"].astype("Float64")
result = getattr(df.groupby("name"), func)(numeric_only=numeric_only)
expected = DataFrame(values, index=Index(["A", "B"], name="name"))
if numeric_only:
expected = expected.drop(columns=["c_date"])
else:
expected["c_date_tz"] = expected["c_date"]
expected["c_timedelta"] = expected["c_date"]
expected["c_period"] = expected["c_date"]
expected["c_Integer"] = expected["c_int"]
expected["c_Floating"] = expected["c_float"]
tm.assert_frame_equal(result, expected)
def test_idxmin_idxmax_axis1():
df = DataFrame(np.random.randn(10, 4), columns=["A", "B", "C", "D"])
df["A"] = [1, 2, 3, 1, 2, 3, 1, 2, 3, 4]
gb = df.groupby("A")
res = gb.idxmax(axis=1)
alt = df.iloc[:, 1:].idxmax(axis=1)
indexer = res.index.get_level_values(1)
tm.assert_series_equal(alt[indexer], res.droplevel("A"))
df["E"] = date_range("2016-01-01", periods=10)
gb2 = df.groupby("A")
msg = "reduction operation 'argmax' not allowed for this dtype"
with pytest.raises(TypeError, match=msg):
gb2.idxmax(axis=1)
@pytest.mark.parametrize("numeric_only", [True, False, None])
def test_axis1_numeric_only(request, groupby_func, numeric_only):
if groupby_func in ("idxmax", "idxmin"):
pytest.skip("idxmax and idx_min tested in test_idxmin_idxmax_axis1")
if groupby_func in ("mad", "tshift"):
pytest.skip("mad and tshift are deprecated")
if groupby_func in ("corrwith", "skew"):
msg = "GH#47723 groupby.corrwith and skew do not correctly implement axis=1"
request.node.add_marker(pytest.mark.xfail(reason=msg))
df = DataFrame(np.random.randn(10, 4), columns=["A", "B", "C", "D"])
df["E"] = "x"
groups = [1, 2, 3, 1, 2, 3, 1, 2, 3, 4]
gb = df.groupby(groups)
method = getattr(gb, groupby_func)
args = get_groupby_method_args(groupby_func, df)
kwargs = {"axis": 1}
if numeric_only is not None:
# when numeric_only is None we don't pass any argument
kwargs["numeric_only"] = numeric_only
# Functions without numeric_only and axis args
no_args = ("cumprod", "cumsum", "diff", "fillna", "pct_change", "rank", "shift")
# Functions with axis args
has_axis = (
"cumprod",
"cumsum",
"diff",
"pct_change",
"rank",
"shift",
"cummax",
"cummin",
"idxmin",
"idxmax",
"fillna",
)
if numeric_only is not None and groupby_func in no_args:
msg = "got an unexpected keyword argument 'numeric_only'"
with pytest.raises(TypeError, match=msg):
method(*args, **kwargs)
elif groupby_func not in has_axis:
msg = "got an unexpected keyword argument 'axis'"
warn = FutureWarning if groupby_func == "skew" and not numeric_only else None
with tm.assert_produces_warning(warn, match="Dropping of nuisance columns"):
with pytest.raises(TypeError, match=msg):
method(*args, **kwargs)
# fillna and shift are successful even on object dtypes
elif (numeric_only is None or not numeric_only) and groupby_func not in (
"fillna",
"shift",
):
msgs = (
# cummax, cummin, rank
"not supported between instances of",
# cumprod
"can't multiply sequence by non-int of type 'float'",
# cumsum, diff, pct_change
"unsupported operand type",
)
with pytest.raises(TypeError, match=f"({'|'.join(msgs)})"):
method(*args, **kwargs)
else:
result = method(*args, **kwargs)
df_expected = df.drop(columns="E").T if numeric_only else df.T
expected = getattr(df_expected, groupby_func)(*args).T
if groupby_func == "shift" and not numeric_only:
# shift with axis=1 leaves the leftmost column as numeric
# but transposing for expected gives us object dtype
expected = expected.astype(float)
tm.assert_equal(result, expected)
def test_groupby_cumprod():
# GH 4095
df = DataFrame({"key": ["b"] * 10, "value": 2})
actual = df.groupby("key")["value"].cumprod()
expected = df.groupby("key", group_keys=False)["value"].apply(lambda x: x.cumprod())
expected.name = "value"
tm.assert_series_equal(actual, expected)
df = DataFrame({"key": ["b"] * 100, "value": 2})
actual = df.groupby("key")["value"].cumprod()
# if overflows, groupby product casts to float
# while numpy passes back invalid values
df["value"] = df["value"].astype(float)
expected = df.groupby("key", group_keys=False)["value"].apply(lambda x: x.cumprod())
expected.name = "value"
tm.assert_series_equal(actual, expected)
def test_groupby_cumprod_nan_influences_other_columns():
# GH#48064
df = DataFrame(
{
"a": 1,
"b": [1, np.nan, 2],
"c": [1, 2, 3.0],
}
)
result = df.groupby("a").cumprod(numeric_only=True, skipna=False)
expected = DataFrame({"b": [1, np.nan, np.nan], "c": [1, 2, 6.0]})
tm.assert_frame_equal(result, expected)
def scipy_sem(*args, **kwargs):
from scipy.stats import sem
return sem(*args, ddof=1, **kwargs)
@pytest.mark.parametrize(
"op,targop",
[
("mean", np.mean),
("median", np.median),
("std", np.std),
("var", np.var),
("sum", np.sum),
("prod", np.prod),
("min", np.min),
("max", np.max),
("first", lambda x: x.iloc[0]),
("last", lambda x: x.iloc[-1]),
("count", np.size),
pytest.param("sem", scipy_sem, marks=td.skip_if_no_scipy),
],
)
def test_ops_general(op, targop):
df = DataFrame(np.random.randn(1000))
labels = np.random.randint(0, 50, size=1000).astype(float)
result = getattr(df.groupby(labels), op)()
expected = df.groupby(labels).agg(targop)
tm.assert_frame_equal(result, expected)
def test_max_nan_bug():
raw = """,Date,app,File
-04-23,2013-04-23 00:00:00,,log080001.log
-05-06,2013-05-06 00:00:00,,log.log
-05-07,2013-05-07 00:00:00,OE,xlsx"""
df = pd.read_csv(StringIO(raw), parse_dates=[0])
gb = df.groupby("Date")
r = gb[["File"]].max()
e = gb["File"].max().to_frame()
tm.assert_frame_equal(r, e)
assert not r["File"].isna().any()
def test_nlargest():
a = Series([1, 3, 5, 7, 2, 9, 0, 4, 6, 10])
b = Series(list("a" * 5 + "b" * 5))
gb = a.groupby(b)
r = gb.nlargest(3)
e = Series(
[7, 5, 3, 10, 9, 6],
index=MultiIndex.from_arrays([list("aaabbb"), [3, 2, 1, 9, 5, 8]]),
)
tm.assert_series_equal(r, e)
a = Series([1, 1, 3, 2, 0, 3, 3, 2, 1, 0])
gb = a.groupby(b)
e = Series(
[3, 2, 1, 3, 3, 2],
index=MultiIndex.from_arrays([list("aaabbb"), [2, 3, 1, 6, 5, 7]]),
)
tm.assert_series_equal(gb.nlargest(3, keep="last"), e)
def test_nlargest_mi_grouper():
# see gh-21411
npr = np.random.RandomState(123456789)
dts = date_range("20180101", periods=10)
iterables = [dts, ["one", "two"]]
idx = MultiIndex.from_product(iterables, names=["first", "second"])
s = Series(npr.randn(20), index=idx)
result = s.groupby("first").nlargest(1)
exp_idx = MultiIndex.from_tuples(
[
(dts[0], dts[0], "one"),
(dts[1], dts[1], "one"),
(dts[2], dts[2], "one"),
(dts[3], dts[3], "two"),
(dts[4], dts[4], "one"),
(dts[5], dts[5], "one"),
(dts[6], dts[6], "one"),
(dts[7], dts[7], "one"),
(dts[8], dts[8], "two"),
(dts[9], dts[9], "one"),
],
names=["first", "first", "second"],
)
exp_values = [
2.2129019979039612,
1.8417114045748335,
0.858963679564603,
1.3759151378258088,
0.9430284594687134,
0.5296914208183142,
0.8318045593815487,
-0.8476703342910327,
0.3804446884133735,
-0.8028845810770998,
]
expected = Series(exp_values, index=exp_idx)
tm.assert_series_equal(result, expected, check_exact=False, rtol=1e-3)
def test_nsmallest():
a = Series([1, 3, 5, 7, 2, 9, 0, 4, 6, 10])
b = Series(list("a" * 5 + "b" * 5))
gb = a.groupby(b)
r = gb.nsmallest(3)
e = Series(
[1, 2, 3, 0, 4, 6],
index=MultiIndex.from_arrays([list("aaabbb"), [0, 4, 1, 6, 7, 8]]),
)
tm.assert_series_equal(r, e)
a = Series([1, 1, 3, 2, 0, 3, 3, 2, 1, 0])
gb = a.groupby(b)
e = Series(
[0, 1, 1, 0, 1, 2],
index=MultiIndex.from_arrays([list("aaabbb"), [4, 1, 0, 9, 8, 7]]),
)
tm.assert_series_equal(gb.nsmallest(3, keep="last"), e)
@pytest.mark.parametrize(
"data, groups",
[([0, 1, 2, 3], [0, 0, 1, 1]), ([0], [0])],
)
@pytest.mark.parametrize("method", ["nlargest", "nsmallest"])
def test_nlargest_and_smallest_noop(data, groups, method):
# GH 15272, GH 16345, GH 29129
# Test nlargest/smallest when it results in a noop,
# i.e. input is sorted and group size <= n
if method == "nlargest":
data = list(reversed(data))
ser = Series(data, name="a")
result = getattr(ser.groupby(groups), method)(n=2)
expected = Series(data, index=MultiIndex.from_arrays([groups, ser.index]), name="a")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("func", ["cumprod", "cumsum"])
def test_numpy_compat(func):
# see gh-12811
df = DataFrame({"A": [1, 2, 1], "B": [1, 2, 3]})
g = df.groupby("A")
msg = "numpy operations are not valid with groupby"
with pytest.raises(UnsupportedFunctionCall, match=msg):
getattr(g, func)(1, 2, 3)
with pytest.raises(UnsupportedFunctionCall, match=msg):
getattr(g, func)(foo=1)
def test_cummin(dtypes_for_minmax):
dtype = dtypes_for_minmax[0]
min_val = dtypes_for_minmax[1]
# GH 15048
base_df = DataFrame({"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [3, 4, 3, 2, 2, 3, 2, 1]})
expected_mins = [3, 3, 3, 2, 2, 2, 2, 1]
df = base_df.astype(dtype)
expected = DataFrame({"B": expected_mins}).astype(dtype)
result = df.groupby("A").cummin()
tm.assert_frame_equal(result, expected)
result = df.groupby("A", group_keys=False).B.apply(lambda x: x.cummin()).to_frame()
tm.assert_frame_equal(result, expected)
# Test w/ min value for dtype
df.loc[[2, 6], "B"] = min_val
df.loc[[1, 5], "B"] = min_val + 1
expected.loc[[2, 3, 6, 7], "B"] = min_val
expected.loc[[1, 5], "B"] = min_val + 1 # should not be rounded to min_val
result = df.groupby("A").cummin()
tm.assert_frame_equal(result, expected, check_exact=True)
expected = (
df.groupby("A", group_keys=False).B.apply(lambda x: x.cummin()).to_frame()
)
tm.assert_frame_equal(result, expected, check_exact=True)
# Test nan in some values
base_df.loc[[0, 2, 4, 6], "B"] = np.nan
expected = DataFrame({"B": [np.nan, 4, np.nan, 2, np.nan, 3, np.nan, 1]})
result = base_df.groupby("A").cummin()
tm.assert_frame_equal(result, expected)
expected = (
base_df.groupby("A", group_keys=False).B.apply(lambda x: x.cummin()).to_frame()
)
tm.assert_frame_equal(result, expected)
# GH 15561
df = DataFrame({"a": [1], "b": pd.to_datetime(["2001"])})
expected = Series(pd.to_datetime("2001"), index=[0], name="b")
result = df.groupby("a")["b"].cummin()
tm.assert_series_equal(expected, result)
# GH 15635
df = DataFrame({"a": [1, 2, 1], "b": [1, 2, 2]})
result = df.groupby("a").b.cummin()
expected = Series([1, 2, 1], name="b")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("method", ["cummin", "cummax"])
@pytest.mark.parametrize("dtype", ["UInt64", "Int64", "Float64", "float", "boolean"])
def test_cummin_max_all_nan_column(method, dtype):
base_df = DataFrame({"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [np.nan] * 8})
base_df["B"] = base_df["B"].astype(dtype)
grouped = base_df.groupby("A")
expected = DataFrame({"B": [np.nan] * 8}, dtype=dtype)
result = getattr(grouped, method)()
tm.assert_frame_equal(expected, result)
result = getattr(grouped["B"], method)().to_frame()
tm.assert_frame_equal(expected, result)
def test_cummax(dtypes_for_minmax):
dtype = dtypes_for_minmax[0]
max_val = dtypes_for_minmax[2]
# GH 15048
base_df = DataFrame({"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [3, 4, 3, 2, 2, 3, 2, 1]})
expected_maxs = [3, 4, 4, 4, 2, 3, 3, 3]
df = base_df.astype(dtype)
expected = DataFrame({"B": expected_maxs}).astype(dtype)
result = df.groupby("A").cummax()
tm.assert_frame_equal(result, expected)
result = df.groupby("A", group_keys=False).B.apply(lambda x: x.cummax()).to_frame()
tm.assert_frame_equal(result, expected)
# Test w/ max value for dtype
df.loc[[2, 6], "B"] = max_val
expected.loc[[2, 3, 6, 7], "B"] = max_val
result = df.groupby("A").cummax()
tm.assert_frame_equal(result, expected)
expected = (
df.groupby("A", group_keys=False).B.apply(lambda x: x.cummax()).to_frame()
)
tm.assert_frame_equal(result, expected)
# Test nan in some values
base_df.loc[[0, 2, 4, 6], "B"] = np.nan
expected = DataFrame({"B": [np.nan, 4, np.nan, 4, np.nan, 3, np.nan, 3]})
result = base_df.groupby("A").cummax()
tm.assert_frame_equal(result, expected)
expected = (
base_df.groupby("A", group_keys=False).B.apply(lambda x: x.cummax()).to_frame()
)
tm.assert_frame_equal(result, expected)
# GH 15561
df = DataFrame({"a": [1], "b": pd.to_datetime(["2001"])})
expected = Series(pd.to_datetime("2001"), index=[0], name="b")
result = df.groupby("a")["b"].cummax()
tm.assert_series_equal(expected, result)
# GH 15635
df = DataFrame({"a": [1, 2, 1], "b": [2, 1, 1]})
result = df.groupby("a").b.cummax()
expected = Series([2, 1, 2], name="b")
tm.assert_series_equal(result, expected)
def test_cummax_i8_at_implementation_bound():
# the minimum value used to be treated as NPY_NAT+1 instead of NPY_NAT
# for int64 dtype GH#46382
ser = Series([pd.NaT.value + n for n in range(5)])
df = DataFrame({"A": 1, "B": ser, "C": ser.view("M8[ns]")})
gb = df.groupby("A")
res = gb.cummax()
exp = df[["B", "C"]]
tm.assert_frame_equal(res, exp)
@pytest.mark.parametrize("method", ["cummin", "cummax"])
@pytest.mark.parametrize("dtype", ["float", "Int64", "Float64"])
@pytest.mark.parametrize(
"groups,expected_data",
[
([1, 1, 1], [1, None, None]),
([1, 2, 3], [1, None, 2]),
([1, 3, 3], [1, None, None]),
],
)
def test_cummin_max_skipna(method, dtype, groups, expected_data):
# GH-34047
df = DataFrame({"a": Series([1, None, 2], dtype=dtype)})
orig = df.copy()
gb = df.groupby(groups)["a"]
result = getattr(gb, method)(skipna=False)
expected = Series(expected_data, dtype=dtype, name="a")
# check we didn't accidentally alter df
tm.assert_frame_equal(df, orig)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("method", ["cummin", "cummax"])
def test_cummin_max_skipna_multiple_cols(method):
# Ensure missing value in "a" doesn't cause "b" to be nan-filled
df = DataFrame({"a": [np.nan, 2.0, 2.0], "b": [2.0, 2.0, 2.0]})
gb = df.groupby([1, 1, 1])[["a", "b"]]
result = getattr(gb, method)(skipna=False)
expected = DataFrame({"a": [np.nan, np.nan, np.nan], "b": [2.0, 2.0, 2.0]})
tm.assert_frame_equal(result, expected)
@td.skip_if_32bit
@pytest.mark.parametrize("method", ["cummin", "cummax"])
@pytest.mark.parametrize(
"dtype,val", [("UInt64", np.iinfo("uint64").max), ("Int64", 2**53 + 1)]
)
def test_nullable_int_not_cast_as_float(method, dtype, val):
data = [val, pd.NA]
df = DataFrame({"grp": [1, 1], "b": data}, dtype=dtype)
grouped = df.groupby("grp")
result = grouped.transform(method)
expected = DataFrame({"b": data}, dtype=dtype)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"in_vals, out_vals",
[
# Basics: strictly increasing (T), strictly decreasing (F),
# abs val increasing (F), non-strictly increasing (T)
([1, 2, 5, 3, 2, 0, 4, 5, -6, 1, 1], [True, False, False, True]),
# Test with inf vals
(
[1, 2.1, np.inf, 3, 2, np.inf, -np.inf, 5, 11, 1, -np.inf],
[True, False, True, False],
),
# Test with nan vals; should always be False
(
[1, 2, np.nan, 3, 2, np.nan, np.nan, 5, -np.inf, 1, np.nan],
[False, False, False, False],
),
],
)
def test_is_monotonic_increasing(in_vals, out_vals):
# GH 17015
source_dict = {
"A": ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11"],
"B": ["a", "a", "a", "b", "b", "b", "c", "c", "c", "d", "d"],
"C": in_vals,
}
df = DataFrame(source_dict)
result = df.groupby("B").C.is_monotonic_increasing
index = Index(list("abcd"), name="B")
expected = Series(index=index, data=out_vals, name="C")
tm.assert_series_equal(result, expected)
# Also check result equal to manually taking x.is_monotonic_increasing.
expected = df.groupby(["B"]).C.apply(lambda x: x.is_monotonic_increasing)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"in_vals, out_vals",
[
# Basics: strictly decreasing (T), strictly increasing (F),
# abs val decreasing (F), non-strictly increasing (T)
([10, 9, 7, 3, 4, 5, -3, 2, 0, 1, 1], [True, False, False, True]),
# Test with inf vals
(
[np.inf, 1, -np.inf, np.inf, 2, -3, -np.inf, 5, -3, -np.inf, -np.inf],
[True, True, False, True],
),
# Test with nan vals; should always be False
(
[1, 2, np.nan, 3, 2, np.nan, np.nan, 5, -np.inf, 1, np.nan],
[False, False, False, False],
),
],
)
def test_is_monotonic_decreasing(in_vals, out_vals):
# GH 17015
source_dict = {
"A": ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11"],
"B": ["a", "a", "a", "b", "b", "b", "c", "c", "c", "d", "d"],
"C": in_vals,
}
df = DataFrame(source_dict)
result = df.groupby("B").C.is_monotonic_decreasing
index = Index(list("abcd"), name="B")
expected = Series(index=index, data=out_vals, name="C")
tm.assert_series_equal(result, expected)
# describe
# --------------------------------
def test_apply_describe_bug(mframe):
grouped = mframe.groupby(level="first")
grouped.describe() # it works!
def test_series_describe_multikey():
ts = tm.makeTimeSeries()
grouped = ts.groupby([lambda x: x.year, lambda x: x.month])
result = grouped.describe()
tm.assert_series_equal(result["mean"], grouped.mean(), check_names=False)
tm.assert_series_equal(result["std"], grouped.std(), check_names=False)
tm.assert_series_equal(result["min"], grouped.min(), check_names=False)
def test_series_describe_single():
ts = tm.makeTimeSeries()
grouped = ts.groupby(lambda x: x.month)
result = grouped.apply(lambda x: x.describe())
expected = grouped.describe().stack()
tm.assert_series_equal(result, expected)
def test_series_index_name(df):
grouped = df.loc[:, ["C"]].groupby(df["A"])
result = grouped.agg(lambda x: x.mean())
assert result.index.name == "A"
def test_frame_describe_multikey(tsframe):
grouped = tsframe.groupby([lambda x: x.year, lambda x: x.month])
result = grouped.describe()
desc_groups = []
for col in tsframe:
group = grouped[col].describe()
# GH 17464 - Remove duplicate MultiIndex levels
group_col = MultiIndex(
levels=[[col], group.columns],
codes=[[0] * len(group.columns), range(len(group.columns))],
)
group = DataFrame(group.values, columns=group_col, index=group.index)
desc_groups.append(group)
expected = pd.concat(desc_groups, axis=1)
tm.assert_frame_equal(result, expected)
groupedT = tsframe.groupby({"A": 0, "B": 0, "C": 1, "D": 1}, axis=1)
result = groupedT.describe()
expected = tsframe.describe().T
# reverting the change from https://github.com/pandas-dev/pandas/pull/35441/
expected.index = MultiIndex(
levels=[[0, 1], expected.index],
codes=[[0, 0, 1, 1], range(len(expected.index))],
)
tm.assert_frame_equal(result, expected)
def test_frame_describe_tupleindex():
# GH 14848 - regression from 0.19.0 to 0.19.1
df1 = DataFrame(
{
"x": [1, 2, 3, 4, 5] * 3,
"y": [10, 20, 30, 40, 50] * 3,
"z": [100, 200, 300, 400, 500] * 3,
}
)
df1["k"] = [(0, 0, 1), (0, 1, 0), (1, 0, 0)] * 5
df2 = df1.rename(columns={"k": "key"})
msg = "Names should be list-like for a MultiIndex"
with pytest.raises(ValueError, match=msg):
df1.groupby("k").describe()
with pytest.raises(ValueError, match=msg):
df2.groupby("key").describe()
def test_frame_describe_unstacked_format():
# GH 4792
prices = {
Timestamp("2011-01-06 10:59:05", tz=None): 24990,
Timestamp("2011-01-06 12:43:33", tz=None): 25499,
Timestamp("2011-01-06 12:54:09", tz=None): 25499,
}
volumes = {
Timestamp("2011-01-06 10:59:05", tz=None): 1500000000,
Timestamp("2011-01-06 12:43:33", tz=None): 5000000000,
Timestamp("2011-01-06 12:54:09", tz=None): 100000000,
}
df = DataFrame({"PRICE": prices, "VOLUME": volumes})
result = df.groupby("PRICE").VOLUME.describe()
data = [
df[df.PRICE == 24990].VOLUME.describe().values.tolist(),
df[df.PRICE == 25499].VOLUME.describe().values.tolist(),
]
expected = DataFrame(
data,
index=Index([24990, 25499], name="PRICE"),
columns=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
)
tm.assert_frame_equal(result, expected)
@pytest.mark.filterwarnings(
"ignore:"
"indexing past lexsort depth may impact performance:"
"pandas.errors.PerformanceWarning"
)
@pytest.mark.parametrize("as_index", [True, False])
def test_describe_with_duplicate_output_column_names(as_index):
# GH 35314
df = DataFrame(
{
"a": [99, 99, 99, 88, 88, 88],
"b": [1, 2, 3, 4, 5, 6],
"c": [10, 20, 30, 40, 50, 60],
},
columns=["a", "b", "b"],
copy=False,
)
expected = (
DataFrame.from_records(
[
("a", "count", 3.0, 3.0),
("a", "mean", 88.0, 99.0),
("a", "std", 0.0, 0.0),
("a", "min", 88.0, 99.0),
("a", "25%", 88.0, 99.0),
("a", "50%", 88.0, 99.0),
("a", "75%", 88.0, 99.0),
("a", "max", 88.0, 99.0),
("b", "count", 3.0, 3.0),
("b", "mean", 5.0, 2.0),
("b", "std", 1.0, 1.0),
("b", "min", 4.0, 1.0),
("b", "25%", 4.5, 1.5),
("b", "50%", 5.0, 2.0),
("b", "75%", 5.5, 2.5),
("b", "max", 6.0, 3.0),
("b", "count", 3.0, 3.0),
("b", "mean", 5.0, 2.0),
("b", "std", 1.0, 1.0),
("b", "min", 4.0, 1.0),
("b", "25%", 4.5, 1.5),
("b", "50%", 5.0, 2.0),
("b", "75%", 5.5, 2.5),
("b", "max", 6.0, 3.0),
],
)
.set_index([0, 1])
.T
)
expected.columns.names = [None, None]
expected.index = Index([88, 99], name="a")
if as_index:
expected = expected.drop(columns=["a"], level=0)
else:
expected = expected.reset_index(drop=True)
result = df.groupby("a", as_index=as_index).describe()
tm.assert_frame_equal(result, expected)
def test_groupby_mean_no_overflow():
# Regression test for (#22487)
df = DataFrame(
{
"user": ["A", "A", "A", "A", "A"],
"connections": [4970, 4749, 4719, 4704, 18446744073699999744],
}
)
assert df.groupby("user")["connections"].mean()["A"] == 3689348814740003840
@pytest.mark.parametrize(
"values",
[
{
"a": [1, 1, 1, 2, 2, 2, 3, 3, 3],
"b": [1, pd.NA, 2, 1, pd.NA, 2, 1, pd.NA, 2],
},
{"a": [1, 1, 2, 2, 3, 3], "b": [1, 2, 1, 2, 1, 2]},
],
)
@pytest.mark.parametrize("function", ["mean", "median", "var"])
def test_apply_to_nullable_integer_returns_float(values, function):
# https://github.com/pandas-dev/pandas/issues/32219
output = 0.5 if function == "var" else 1.5
arr = np.array([output] * 3, dtype=float)
idx = Index([1, 2, 3], name="a", dtype="Int64")
expected = DataFrame({"b": arr}, index=idx).astype("Float64")
groups = DataFrame(values, dtype="Int64").groupby("a")
result = getattr(groups, function)()
tm.assert_frame_equal(result, expected)
result = groups.agg(function)
tm.assert_frame_equal(result, expected)
result = groups.agg([function])
expected.columns = MultiIndex.from_tuples([("b", function)])
tm.assert_frame_equal(result, expected)
def test_groupby_sum_below_mincount_nullable_integer():
# https://github.com/pandas-dev/pandas/issues/32861
df = DataFrame({"a": [0, 1, 2], "b": [0, 1, 2], "c": [0, 1, 2]}, dtype="Int64")
grouped = df.groupby("a")
idx = Index([0, 1, 2], name="a", dtype="Int64")
result = grouped["b"].sum(min_count=2)
expected = Series([pd.NA] * 3, dtype="Int64", index=idx, name="b")
tm.assert_series_equal(result, expected)
result = grouped.sum(min_count=2)
expected = DataFrame({"b": [pd.NA] * 3, "c": [pd.NA] * 3}, dtype="Int64", index=idx)
tm.assert_frame_equal(result, expected)
def test_mean_on_timedelta():
# GH 17382
df = DataFrame({"time": pd.to_timedelta(range(10)), "cat": ["A", "B"] * 5})
result = df.groupby("cat")["time"].mean()
expected = Series(
pd.to_timedelta([4, 5]), name="time", index=Index(["A", "B"], name="cat")
)
tm.assert_series_equal(result, expected)
def test_groupby_sum_timedelta_with_nat():
# GH#42659
df = DataFrame(
{
"a": [1, 1, 2, 2],
"b": [pd.Timedelta("1d"), pd.Timedelta("2d"), pd.Timedelta("3d"), pd.NaT],
}
)
td3 = pd.Timedelta(days=3)
gb = df.groupby("a")
res = gb.sum()
expected = DataFrame({"b": [td3, td3]}, index=Index([1, 2], name="a"))
tm.assert_frame_equal(res, expected)
res = gb["b"].sum()
tm.assert_series_equal(res, expected["b"])
res = gb["b"].sum(min_count=2)
expected = Series([td3, pd.NaT], dtype="m8[ns]", name="b", index=expected.index)
tm.assert_series_equal(res, expected)
@pytest.mark.parametrize(
"kernel, numeric_only_default, drops_nuisance, has_arg",
[
("all", False, False, False),
("any", False, False, False),
("bfill", False, False, False),
("corr", True, False, True),
("corrwith", True, False, True),
("cov", True, False, True),
("cummax", False, True, True),
("cummin", False, True, True),
("cumprod", True, True, True),
("cumsum", True, True, True),
("diff", False, False, False),
("ffill", False, False, False),
("fillna", False, False, False),
("first", False, False, True),
("idxmax", True, False, True),
("idxmin", True, False, True),
("last", False, False, True),
("max", False, True, True),
("mean", True, True, True),
("median", True, True, True),
("min", False, True, True),
("nth", False, False, False),
("nunique", False, False, False),
("pct_change", False, False, False),
("prod", True, True, True),
("quantile", True, False, True),
("sem", True, True, True),
("skew", True, False, True),
("std", True, True, True),
("sum", True, True, True),
("var", True, False, True),
],
)
@pytest.mark.parametrize("numeric_only", [True, False, lib.no_default])
@pytest.mark.parametrize("keys", [["a1"], ["a1", "a2"]])
def test_deprecate_numeric_only(
kernel, numeric_only_default, drops_nuisance, has_arg, numeric_only, keys
):
# GH#46072
# drops_nuisance: Whether the op drops nuisance columns even when numeric_only=False
# has_arg: Whether the op has a numeric_only arg
df = DataFrame({"a1": [1, 1], "a2": [2, 2], "a3": [5, 6], "b": 2 * [object]})
args = get_groupby_method_args(kernel, df)
kwargs = {} if numeric_only is lib.no_default else {"numeric_only": numeric_only}
gb = df.groupby(keys)
method = getattr(gb, kernel)
if has_arg and (
# Cases where b does not appear in the result
numeric_only is True
or (numeric_only is lib.no_default and numeric_only_default)
or drops_nuisance
):
if numeric_only is True or (not numeric_only_default and not drops_nuisance):
warn = None
else:
warn = FutureWarning
if numeric_only is lib.no_default and numeric_only_default:
msg = f"The default value of numeric_only in DataFrameGroupBy.{kernel}"
else:
msg = f"Dropping invalid columns in DataFrameGroupBy.{kernel}"
with tm.assert_produces_warning(warn, match=msg):
result = method(*args, **kwargs)
assert "b" not in result.columns
elif (
# kernels that work on any dtype and have numeric_only arg
kernel in ("first", "last")
or (
# kernels that work on any dtype and don't have numeric_only arg
kernel in ("any", "all", "bfill", "ffill", "fillna", "nth", "nunique")
and numeric_only is lib.no_default
)
):
result = method(*args, **kwargs)
assert "b" in result.columns
elif has_arg:
assert numeric_only is not True
assert numeric_only is not lib.no_default or numeric_only_default is False
assert not drops_nuisance
# kernels that are successful on any dtype were above; this will fail
msg = (
"(not allowed for this dtype"
"|must be a string or a number"
"|cannot be performed against 'object' dtypes"
"|must be a string or a real number"
"|unsupported operand type)"
)
with pytest.raises(TypeError, match=msg):
method(*args, **kwargs)
elif not has_arg and numeric_only is not lib.no_default:
with pytest.raises(
TypeError, match="got an unexpected keyword argument 'numeric_only'"
):
method(*args, **kwargs)
else:
assert kernel in ("diff", "pct_change")
assert numeric_only is lib.no_default
# Doesn't have numeric_only argument and fails on nuisance columns
with pytest.raises(TypeError, match=r"unsupported operand type"):
method(*args, **kwargs)
@pytest.mark.parametrize("dtype", [bool, int, float, object])
def test_deprecate_numeric_only_series(dtype, groupby_func, request):
# GH#46560
if groupby_func in ("backfill", "mad", "pad", "tshift"):
pytest.skip("method is deprecated")
elif groupby_func == "corrwith":
msg = "corrwith is not implemented on SeriesGroupBy"
request.node.add_marker(pytest.mark.xfail(reason=msg))
grouper = [0, 0, 1]
ser = Series([1, 0, 0], dtype=dtype)
gb = ser.groupby(grouper)
method = getattr(gb, groupby_func)
expected_ser = Series([1, 0, 0])
expected_gb = expected_ser.groupby(grouper)
expected_method = getattr(expected_gb, groupby_func)
args = get_groupby_method_args(groupby_func, ser)
fails_on_numeric_object = (
"corr",
"cov",
"cummax",
"cummin",
"cumprod",
"cumsum",
"idxmax",
"idxmin",
"quantile",
)
# ops that give an object result on object input
obj_result = (
"first",
"last",
"nth",
"bfill",
"ffill",
"shift",
"sum",
"diff",
"pct_change",
)
# Test default behavior; kernels that fail may be enabled in the future but kernels
# that succeed should not be allowed to fail (without deprecation, at least)
if groupby_func in fails_on_numeric_object and dtype is object:
if groupby_func in ("idxmax", "idxmin"):
msg = "not allowed for this dtype"
elif groupby_func == "quantile":
msg = "cannot be performed against 'object' dtypes"
else:
msg = "is not supported for object dtype"
with pytest.raises(TypeError, match=msg):
method(*args)
elif dtype is object:
result = method(*args)
expected = expected_method(*args)
if groupby_func in obj_result:
expected = expected.astype(object)
tm.assert_series_equal(result, expected)
has_numeric_only = (
"first",
"last",
"max",
"mean",
"median",
"min",
"prod",
"quantile",
"sem",
"skew",
"std",
"sum",
"var",
"cummax",
"cummin",
"cumprod",
"cumsum",
)
if groupby_func not in has_numeric_only:
msg = "got an unexpected keyword argument 'numeric_only'"
with pytest.raises(TypeError, match=msg):
method(*args, numeric_only=True)
elif dtype is object:
err_category = NotImplementedError
err_msg = f"{groupby_func} does not implement numeric_only"
if groupby_func.startswith("cum"):
# cum ops already exhibit future behavior
warn_category = None
warn_msg = ""
err_category = TypeError
err_msg = f"{groupby_func} is not supported for object dtype"
elif groupby_func == "skew":
warn_category = FutureWarning
warn_msg = "will raise a TypeError in the future"
else:
warn_category = FutureWarning
warn_msg = "This will raise a TypeError"
with tm.assert_produces_warning(warn_category, match=warn_msg):
with pytest.raises(err_category, match=err_msg):
method(*args, numeric_only=True)
else:
result = method(*args, numeric_only=True)
expected = method(*args, numeric_only=False)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("dtype", [int, float, object])
@pytest.mark.parametrize(
"kwargs",
[
{"percentiles": [0.10, 0.20, 0.30], "include": "all", "exclude": None},
{"percentiles": [0.10, 0.20, 0.30], "include": None, "exclude": ["int"]},
{"percentiles": [0.10, 0.20, 0.30], "include": ["int"], "exclude": None},
],
)
def test_groupby_empty_dataset(dtype, kwargs):
# GH#41575
df = DataFrame([[1, 2, 3]], columns=["A", "B", "C"], dtype=dtype)
df["B"] = df["B"].astype(int)
df["C"] = df["C"].astype(float)
result = df.iloc[:0].groupby("A").describe(**kwargs)
expected = df.groupby("A").describe(**kwargs).reset_index(drop=True).iloc[:0]
tm.assert_frame_equal(result, expected)
result = df.iloc[:0].groupby("A").B.describe(**kwargs)
expected = df.groupby("A").B.describe(**kwargs).reset_index(drop=True).iloc[:0]
expected.index = Index([])
tm.assert_frame_equal(result, expected)
def test_corrwith_with_1_axis():
# GH 47723
df = DataFrame({"a": [1, 1, 2], "b": [3, 7, 4]})
result = df.groupby("a").corrwith(df, axis=1)
index = Index(
data=[(1, 0), (1, 1), (1, 2), (2, 2), (2, 0), (2, 1)],
name=("a", None),
)
expected = Series([np.nan] * 6, index=index)
tm.assert_series_equal(result, expected)
@pytest.mark.filterwarnings("ignore:.* is deprecated:FutureWarning")
def test_multiindex_group_all_columns_when_empty(groupby_func):
# GH 32464
df = DataFrame({"a": [], "b": [], "c": []}).set_index(["a", "b", "c"])
gb = df.groupby(["a", "b", "c"], group_keys=False)
method = getattr(gb, groupby_func)
args = get_groupby_method_args(groupby_func, df)
result = method(*args).index
expected = df.index
tm.assert_index_equal(result, expected)