aoc-2022/venv/Lib/site-packages/pandas/tests/groupby/aggregate/test_cython.py

402 lines
11 KiB
Python

"""
test cython .agg behavior
"""
import numpy as np
import pytest
from pandas.core.dtypes.common import (
is_float_dtype,
is_integer_dtype,
)
import pandas as pd
from pandas import (
DataFrame,
Index,
NaT,
Series,
Timedelta,
Timestamp,
bdate_range,
)
import pandas._testing as tm
@pytest.mark.parametrize(
"op_name",
[
"count",
"sum",
"std",
"var",
"sem",
"mean",
pytest.param(
"median",
# ignore mean of empty slice
# and all-NaN
marks=[pytest.mark.filterwarnings("ignore::RuntimeWarning")],
),
"prod",
"min",
"max",
],
)
def test_cythonized_aggers(op_name):
data = {
"A": [0, 0, 0, 0, 1, 1, 1, 1, 1, 1.0, np.nan, np.nan],
"B": ["A", "B"] * 6,
"C": np.random.randn(12),
}
df = DataFrame(data)
df.loc[2:10:2, "C"] = np.nan
op = lambda x: getattr(x, op_name)()
# single column
grouped = df.drop(["B"], axis=1).groupby("A")
exp = {cat: op(group["C"]) for cat, group in grouped}
exp = DataFrame({"C": exp})
exp.index.name = "A"
result = op(grouped)
tm.assert_frame_equal(result, exp)
# multiple columns
grouped = df.groupby(["A", "B"])
expd = {}
for (cat1, cat2), group in grouped:
expd.setdefault(cat1, {})[cat2] = op(group["C"])
exp = DataFrame(expd).T.stack(dropna=False)
exp.index.names = ["A", "B"]
exp.name = "C"
result = op(grouped)["C"]
if op_name in ["sum", "prod"]:
tm.assert_series_equal(result, exp)
def test_cython_agg_boolean():
frame = DataFrame(
{
"a": np.random.randint(0, 5, 50),
"b": np.random.randint(0, 2, 50).astype("bool"),
}
)
result = frame.groupby("a")["b"].mean()
expected = frame.groupby("a")["b"].agg(np.mean)
tm.assert_series_equal(result, expected)
def test_cython_agg_nothing_to_agg():
frame = DataFrame({"a": np.random.randint(0, 5, 50), "b": ["foo", "bar"] * 25})
with tm.assert_produces_warning(FutureWarning, match="This will raise a TypeError"):
with pytest.raises(NotImplementedError, match="does not implement"):
frame.groupby("a")["b"].mean(numeric_only=True)
with pytest.raises(TypeError, match="Could not convert (foo|bar)*"):
frame.groupby("a")["b"].mean()
frame = DataFrame({"a": np.random.randint(0, 5, 50), "b": ["foo", "bar"] * 25})
with tm.assert_produces_warning(FutureWarning):
result = frame[["b"]].groupby(frame["a"]).mean()
expected = DataFrame([], index=frame["a"].sort_values().drop_duplicates())
tm.assert_frame_equal(result, expected)
def test_cython_agg_nothing_to_agg_with_dates():
frame = DataFrame(
{
"a": np.random.randint(0, 5, 50),
"b": ["foo", "bar"] * 25,
"dates": pd.date_range("now", periods=50, freq="T"),
}
)
with tm.assert_produces_warning(FutureWarning, match="This will raise a TypeError"):
with pytest.raises(NotImplementedError, match="does not implement"):
frame.groupby("b").dates.mean(numeric_only=True)
def test_cython_agg_frame_columns():
# #2113
df = DataFrame({"x": [1, 2, 3], "y": [3, 4, 5]})
df.groupby(level=0, axis="columns").mean()
df.groupby(level=0, axis="columns").mean()
df.groupby(level=0, axis="columns").mean()
df.groupby(level=0, axis="columns").mean()
def test_cython_agg_return_dict():
# GH 16741
df = DataFrame(
{
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
"B": ["one", "one", "two", "three", "two", "two", "one", "three"],
"C": np.random.randn(8),
"D": np.random.randn(8),
}
)
ts = df.groupby("A")["B"].agg(lambda x: x.value_counts().to_dict())
expected = Series(
[{"two": 1, "one": 1, "three": 1}, {"two": 2, "one": 2, "three": 1}],
index=Index(["bar", "foo"], name="A"),
name="B",
)
tm.assert_series_equal(ts, expected)
def test_cython_fail_agg():
dr = bdate_range("1/1/2000", periods=50)
ts = Series(["A", "B", "C", "D", "E"] * 10, index=dr)
grouped = ts.groupby(lambda x: x.month)
summed = grouped.sum()
expected = grouped.agg(np.sum)
tm.assert_series_equal(summed, expected)
@pytest.mark.parametrize(
"op, targop",
[
("mean", np.mean),
("median", np.median),
("var", np.var),
("sum", np.sum),
("prod", np.prod),
("min", np.min),
("max", np.max),
("first", lambda x: x.iloc[0]),
("last", lambda x: x.iloc[-1]),
],
)
def test__cython_agg_general(op, targop):
df = DataFrame(np.random.randn(1000))
labels = np.random.randint(0, 50, size=1000).astype(float)
result = df.groupby(labels)._cython_agg_general(op, alt=None, numeric_only=True)
expected = df.groupby(labels).agg(targop)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"op, targop",
[
("mean", np.mean),
("median", lambda x: np.median(x) if len(x) > 0 else np.nan),
("var", lambda x: np.var(x, ddof=1)),
("min", np.min),
("max", np.max),
],
)
def test_cython_agg_empty_buckets(op, targop, observed):
df = DataFrame([11, 12, 13])
grps = range(0, 55, 5)
# calling _cython_agg_general directly, instead of via the user API
# which sets different values for min_count, so do that here.
g = df.groupby(pd.cut(df[0], grps), observed=observed)
result = g._cython_agg_general(op, alt=None, numeric_only=True)
g = df.groupby(pd.cut(df[0], grps), observed=observed)
expected = g.agg(lambda x: targop(x))
tm.assert_frame_equal(result, expected)
def test_cython_agg_empty_buckets_nanops(observed):
# GH-18869 can't call nanops on empty groups, so hardcode expected
# for these
df = DataFrame([11, 12, 13], columns=["a"])
grps = range(0, 25, 5)
# add / sum
result = df.groupby(pd.cut(df["a"], grps), observed=observed)._cython_agg_general(
"sum", alt=None, numeric_only=True
)
intervals = pd.interval_range(0, 20, freq=5)
expected = DataFrame(
{"a": [0, 0, 36, 0]},
index=pd.CategoricalIndex(intervals, name="a", ordered=True),
)
if observed:
expected = expected[expected.a != 0]
tm.assert_frame_equal(result, expected)
# prod
result = df.groupby(pd.cut(df["a"], grps), observed=observed)._cython_agg_general(
"prod", alt=None, numeric_only=True
)
expected = DataFrame(
{"a": [1, 1, 1716, 1]},
index=pd.CategoricalIndex(intervals, name="a", ordered=True),
)
if observed:
expected = expected[expected.a != 1]
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("op", ["first", "last", "max", "min"])
@pytest.mark.parametrize(
"data", [Timestamp("2016-10-14 21:00:44.557"), Timedelta("17088 days 21:00:44.557")]
)
def test_cython_with_timestamp_and_nat(op, data):
# https://github.com/pandas-dev/pandas/issues/19526
df = DataFrame({"a": [0, 1], "b": [data, NaT]})
index = Index([0, 1], name="a")
# We will group by a and test the cython aggregations
expected = DataFrame({"b": [data, NaT]}, index=index)
result = df.groupby("a").aggregate(op)
tm.assert_frame_equal(expected, result)
@pytest.mark.parametrize(
"agg",
[
"min",
"max",
"count",
"sum",
"prod",
"var",
"mean",
"median",
"ohlc",
"cumprod",
"cumsum",
"shift",
"any",
"all",
"quantile",
"first",
"last",
"rank",
"cummin",
"cummax",
],
)
def test_read_only_buffer_source_agg(agg):
# https://github.com/pandas-dev/pandas/issues/36014
df = DataFrame(
{
"sepal_length": [5.1, 4.9, 4.7, 4.6, 5.0],
"species": ["setosa", "setosa", "setosa", "setosa", "setosa"],
}
)
df._mgr.arrays[0].flags.writeable = False
result = df.groupby(["species"]).agg({"sepal_length": agg})
expected = df.copy().groupby(["species"]).agg({"sepal_length": agg})
tm.assert_equal(result, expected)
@pytest.mark.parametrize(
"op_name",
[
"count",
"sum",
"std",
"var",
"sem",
"mean",
"median",
"prod",
"min",
"max",
],
)
def test_cython_agg_nullable_int(op_name):
# ensure that the cython-based aggregations don't fail for nullable dtype
# (eg https://github.com/pandas-dev/pandas/issues/37415)
df = DataFrame(
{
"A": ["A", "B"] * 5,
"B": pd.array([1, 2, 3, 4, 5, 6, 7, 8, 9, pd.NA], dtype="Int64"),
}
)
result = getattr(df.groupby("A")["B"], op_name)()
df2 = df.assign(B=df["B"].astype("float64"))
expected = getattr(df2.groupby("A")["B"], op_name)()
if op_name != "count":
# the result is not yet consistently using Int64/Float64 dtype,
# so for now just checking the values by casting to float
result = result.astype("float64")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("with_na", [True, False])
@pytest.mark.parametrize(
"op_name, action",
[
# ("count", "always_int"),
("sum", "large_int"),
# ("std", "always_float"),
("var", "always_float"),
# ("sem", "always_float"),
("mean", "always_float"),
("median", "always_float"),
("prod", "large_int"),
("min", "preserve"),
("max", "preserve"),
("first", "preserve"),
("last", "preserve"),
],
)
@pytest.mark.parametrize(
"data",
[
pd.array([1, 2, 3, 4], dtype="Int64"),
pd.array([1, 2, 3, 4], dtype="Int8"),
pd.array([0.1, 0.2, 0.3, 0.4], dtype="Float32"),
pd.array([0.1, 0.2, 0.3, 0.4], dtype="Float64"),
pd.array([True, True, False, False], dtype="boolean"),
],
)
def test_cython_agg_EA_known_dtypes(data, op_name, action, with_na):
if with_na:
data[3] = pd.NA
df = DataFrame({"key": ["a", "a", "b", "b"], "col": data})
grouped = df.groupby("key")
if action == "always_int":
# always Int64
expected_dtype = pd.Int64Dtype()
elif action == "large_int":
# for any int/bool use Int64, for float preserve dtype
if is_float_dtype(data.dtype):
expected_dtype = data.dtype
elif is_integer_dtype(data.dtype):
# match the numpy dtype we'd get with the non-nullable analogue
expected_dtype = data.dtype
else:
expected_dtype = pd.Int64Dtype()
elif action == "always_float":
# for any int/bool use Float64, for float preserve dtype
if is_float_dtype(data.dtype):
expected_dtype = data.dtype
else:
expected_dtype = pd.Float64Dtype()
elif action == "preserve":
expected_dtype = data.dtype
result = getattr(grouped, op_name)()
assert result["col"].dtype == expected_dtype
result = grouped.aggregate(op_name)
assert result["col"].dtype == expected_dtype
result = getattr(grouped["col"], op_name)()
assert result.dtype == expected_dtype
result = grouped["col"].aggregate(op_name)
assert result.dtype == expected_dtype