318 lines
10 KiB
Python
318 lines
10 KiB
Python
import collections
|
|
from datetime import timedelta
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pandas.compat import pa_version_under7p0
|
|
from pandas.errors import PerformanceWarning
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
DatetimeIndex,
|
|
Index,
|
|
Interval,
|
|
IntervalIndex,
|
|
Series,
|
|
Timedelta,
|
|
TimedeltaIndex,
|
|
)
|
|
import pandas._testing as tm
|
|
from pandas.tests.base.common import allow_na_ops
|
|
|
|
|
|
def test_value_counts(index_or_series_obj):
|
|
obj = index_or_series_obj
|
|
obj = np.repeat(obj, range(1, len(obj) + 1))
|
|
result = obj.value_counts()
|
|
|
|
counter = collections.Counter(obj)
|
|
expected = Series(dict(counter.most_common()), dtype=np.int64, name=obj.name)
|
|
expected.index = expected.index.astype(obj.dtype)
|
|
if isinstance(obj, pd.MultiIndex):
|
|
expected.index = Index(expected.index)
|
|
|
|
if not isinstance(result.dtype, np.dtype):
|
|
# i.e IntegerDtype
|
|
expected = expected.astype("Int64")
|
|
|
|
# TODO(GH#32514): Order of entries with the same count is inconsistent
|
|
# on CI (gh-32449)
|
|
if obj.duplicated().any():
|
|
with tm.maybe_produces_warning(
|
|
PerformanceWarning,
|
|
pa_version_under7p0 and getattr(obj.dtype, "storage", "") == "pyarrow",
|
|
):
|
|
result = result.sort_index()
|
|
with tm.maybe_produces_warning(
|
|
PerformanceWarning,
|
|
pa_version_under7p0 and getattr(obj.dtype, "storage", "") == "pyarrow",
|
|
):
|
|
expected = expected.sort_index()
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("null_obj", [np.nan, None])
|
|
def test_value_counts_null(null_obj, index_or_series_obj):
|
|
orig = index_or_series_obj
|
|
obj = orig.copy()
|
|
|
|
if not allow_na_ops(obj):
|
|
pytest.skip("type doesn't allow for NA operations")
|
|
elif len(obj) < 1:
|
|
pytest.skip("Test doesn't make sense on empty data")
|
|
elif isinstance(orig, pd.MultiIndex):
|
|
pytest.skip(f"MultiIndex can't hold '{null_obj}'")
|
|
|
|
values = obj._values
|
|
values[0:2] = null_obj
|
|
|
|
klass = type(obj)
|
|
repeated_values = np.repeat(values, range(1, len(values) + 1))
|
|
obj = klass(repeated_values, dtype=obj.dtype)
|
|
|
|
# because np.nan == np.nan is False, but None == None is True
|
|
# np.nan would be duplicated, whereas None wouldn't
|
|
counter = collections.Counter(obj.dropna())
|
|
expected = Series(dict(counter.most_common()), dtype=np.int64)
|
|
expected.index = expected.index.astype(obj.dtype)
|
|
|
|
result = obj.value_counts()
|
|
if obj.duplicated().any():
|
|
# TODO(GH#32514):
|
|
# Order of entries with the same count is inconsistent on CI (gh-32449)
|
|
with tm.maybe_produces_warning(
|
|
PerformanceWarning,
|
|
pa_version_under7p0 and getattr(obj.dtype, "storage", "") == "pyarrow",
|
|
):
|
|
expected = expected.sort_index()
|
|
with tm.maybe_produces_warning(
|
|
PerformanceWarning,
|
|
pa_version_under7p0 and getattr(obj.dtype, "storage", "") == "pyarrow",
|
|
):
|
|
result = result.sort_index()
|
|
|
|
if not isinstance(result.dtype, np.dtype):
|
|
# i.e IntegerDtype
|
|
expected = expected.astype("Int64")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
expected[null_obj] = 3
|
|
|
|
result = obj.value_counts(dropna=False)
|
|
if obj.duplicated().any():
|
|
# TODO(GH#32514):
|
|
# Order of entries with the same count is inconsistent on CI (gh-32449)
|
|
with tm.maybe_produces_warning(
|
|
PerformanceWarning,
|
|
pa_version_under7p0 and getattr(obj.dtype, "storage", "") == "pyarrow",
|
|
):
|
|
expected = expected.sort_index()
|
|
with tm.maybe_produces_warning(
|
|
PerformanceWarning,
|
|
pa_version_under7p0 and getattr(obj.dtype, "storage", "") == "pyarrow",
|
|
):
|
|
result = result.sort_index()
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_value_counts_inferred(index_or_series):
|
|
klass = index_or_series
|
|
s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"]
|
|
s = klass(s_values)
|
|
expected = Series([4, 3, 2, 1], index=["b", "a", "d", "c"])
|
|
tm.assert_series_equal(s.value_counts(), expected)
|
|
|
|
if isinstance(s, Index):
|
|
exp = Index(np.unique(np.array(s_values, dtype=np.object_)))
|
|
tm.assert_index_equal(s.unique(), exp)
|
|
else:
|
|
exp = np.unique(np.array(s_values, dtype=np.object_))
|
|
tm.assert_numpy_array_equal(s.unique(), exp)
|
|
|
|
assert s.nunique() == 4
|
|
# don't sort, have to sort after the fact as not sorting is
|
|
# platform-dep
|
|
hist = s.value_counts(sort=False).sort_values()
|
|
expected = Series([3, 1, 4, 2], index=list("acbd")).sort_values()
|
|
tm.assert_series_equal(hist, expected)
|
|
|
|
# sort ascending
|
|
hist = s.value_counts(ascending=True)
|
|
expected = Series([1, 2, 3, 4], index=list("cdab"))
|
|
tm.assert_series_equal(hist, expected)
|
|
|
|
# relative histogram.
|
|
hist = s.value_counts(normalize=True)
|
|
expected = Series([0.4, 0.3, 0.2, 0.1], index=["b", "a", "d", "c"])
|
|
tm.assert_series_equal(hist, expected)
|
|
|
|
|
|
def test_value_counts_bins(index_or_series):
|
|
klass = index_or_series
|
|
s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"]
|
|
s = klass(s_values)
|
|
|
|
# bins
|
|
msg = "bins argument only works with numeric data"
|
|
with pytest.raises(TypeError, match=msg):
|
|
s.value_counts(bins=1)
|
|
|
|
s1 = Series([1, 1, 2, 3])
|
|
res1 = s1.value_counts(bins=1)
|
|
exp1 = Series({Interval(0.997, 3.0): 4})
|
|
tm.assert_series_equal(res1, exp1)
|
|
res1n = s1.value_counts(bins=1, normalize=True)
|
|
exp1n = Series({Interval(0.997, 3.0): 1.0})
|
|
tm.assert_series_equal(res1n, exp1n)
|
|
|
|
if isinstance(s1, Index):
|
|
tm.assert_index_equal(s1.unique(), Index([1, 2, 3]))
|
|
else:
|
|
exp = np.array([1, 2, 3], dtype=np.int64)
|
|
tm.assert_numpy_array_equal(s1.unique(), exp)
|
|
|
|
assert s1.nunique() == 3
|
|
|
|
# these return the same
|
|
res4 = s1.value_counts(bins=4, dropna=True)
|
|
intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0])
|
|
exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 1, 3, 2]))
|
|
tm.assert_series_equal(res4, exp4)
|
|
|
|
res4 = s1.value_counts(bins=4, dropna=False)
|
|
intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0])
|
|
exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 1, 3, 2]))
|
|
tm.assert_series_equal(res4, exp4)
|
|
|
|
res4n = s1.value_counts(bins=4, normalize=True)
|
|
exp4n = Series([0.5, 0.25, 0.25, 0], index=intervals.take([0, 1, 3, 2]))
|
|
tm.assert_series_equal(res4n, exp4n)
|
|
|
|
# handle NA's properly
|
|
s_values = ["a", "b", "b", "b", np.nan, np.nan, "d", "d", "a", "a", "b"]
|
|
s = klass(s_values)
|
|
expected = Series([4, 3, 2], index=["b", "a", "d"])
|
|
tm.assert_series_equal(s.value_counts(), expected)
|
|
|
|
if isinstance(s, Index):
|
|
exp = Index(["a", "b", np.nan, "d"])
|
|
tm.assert_index_equal(s.unique(), exp)
|
|
else:
|
|
exp = np.array(["a", "b", np.nan, "d"], dtype=object)
|
|
tm.assert_numpy_array_equal(s.unique(), exp)
|
|
assert s.nunique() == 3
|
|
|
|
s = klass({}) if klass is dict else klass({}, dtype=object)
|
|
expected = Series([], dtype=np.int64)
|
|
tm.assert_series_equal(s.value_counts(), expected, check_index_type=False)
|
|
# returned dtype differs depending on original
|
|
if isinstance(s, Index):
|
|
tm.assert_index_equal(s.unique(), Index([]), exact=False)
|
|
else:
|
|
tm.assert_numpy_array_equal(s.unique(), np.array([]), check_dtype=False)
|
|
|
|
assert s.nunique() == 0
|
|
|
|
|
|
def test_value_counts_datetime64(index_or_series):
|
|
klass = index_or_series
|
|
|
|
# GH 3002, datetime64[ns]
|
|
# don't test names though
|
|
df = pd.DataFrame(
|
|
{
|
|
"person_id": ["xxyyzz", "xxyyzz", "xxyyzz", "xxyyww", "foofoo", "foofoo"],
|
|
"dt": pd.to_datetime(
|
|
[
|
|
"2010-01-01",
|
|
"2010-01-01",
|
|
"2010-01-01",
|
|
"2009-01-01",
|
|
"2008-09-09",
|
|
"2008-09-09",
|
|
]
|
|
),
|
|
"food": ["PIE", "GUM", "EGG", "EGG", "PIE", "GUM"],
|
|
}
|
|
)
|
|
|
|
s = klass(df["dt"].copy())
|
|
s.name = None
|
|
idx = pd.to_datetime(
|
|
["2010-01-01 00:00:00", "2008-09-09 00:00:00", "2009-01-01 00:00:00"]
|
|
)
|
|
expected_s = Series([3, 2, 1], index=idx)
|
|
tm.assert_series_equal(s.value_counts(), expected_s)
|
|
|
|
expected = np.array(
|
|
["2010-01-01 00:00:00", "2009-01-01 00:00:00", "2008-09-09 00:00:00"],
|
|
dtype="datetime64[ns]",
|
|
)
|
|
if isinstance(s, Index):
|
|
tm.assert_index_equal(s.unique(), DatetimeIndex(expected))
|
|
else:
|
|
tm.assert_numpy_array_equal(s.unique(), expected)
|
|
|
|
assert s.nunique() == 3
|
|
|
|
# with NaT
|
|
s = df["dt"].copy()
|
|
s = klass(list(s.values) + [pd.NaT] * 4)
|
|
|
|
result = s.value_counts()
|
|
assert result.index.dtype == "datetime64[ns]"
|
|
tm.assert_series_equal(result, expected_s)
|
|
|
|
result = s.value_counts(dropna=False)
|
|
expected_s = pd.concat([Series([4], index=DatetimeIndex([pd.NaT])), expected_s])
|
|
tm.assert_series_equal(result, expected_s)
|
|
|
|
assert s.dtype == "datetime64[ns]"
|
|
unique = s.unique()
|
|
assert unique.dtype == "datetime64[ns]"
|
|
|
|
# numpy_array_equal cannot compare pd.NaT
|
|
if isinstance(s, Index):
|
|
exp_idx = DatetimeIndex(expected.tolist() + [pd.NaT])
|
|
tm.assert_index_equal(unique, exp_idx)
|
|
else:
|
|
tm.assert_numpy_array_equal(unique[:3], expected)
|
|
assert pd.isna(unique[3])
|
|
|
|
assert s.nunique() == 3
|
|
assert s.nunique(dropna=False) == 4
|
|
|
|
# timedelta64[ns]
|
|
td = df.dt - df.dt + timedelta(1)
|
|
td = klass(td, name="dt")
|
|
|
|
result = td.value_counts()
|
|
expected_s = Series([6], index=[Timedelta("1day")], name="dt")
|
|
tm.assert_series_equal(result, expected_s)
|
|
|
|
expected = TimedeltaIndex(["1 days"], name="dt")
|
|
if isinstance(td, Index):
|
|
tm.assert_index_equal(td.unique(), expected)
|
|
else:
|
|
tm.assert_numpy_array_equal(td.unique(), expected.values)
|
|
|
|
td2 = timedelta(1) + (df.dt - df.dt)
|
|
td2 = klass(td2, name="dt")
|
|
result2 = td2.value_counts()
|
|
tm.assert_series_equal(result2, expected_s)
|
|
|
|
|
|
@pytest.mark.parametrize("dropna", [True, False])
|
|
def test_value_counts_with_nan(dropna, index_or_series):
|
|
# GH31944
|
|
klass = index_or_series
|
|
values = [True, pd.NA, np.nan]
|
|
obj = klass(values)
|
|
res = obj.value_counts(dropna=dropna)
|
|
if dropna is True:
|
|
expected = Series([1], index=Index([True], dtype=obj.dtype))
|
|
else:
|
|
expected = Series([1, 1, 1], index=[True, pd.NA, np.nan])
|
|
tm.assert_series_equal(res, expected)
|