aoc-2022/venv/Lib/site-packages/pandas/tests/arrays/integer/test_concat.py

70 lines
2.3 KiB
Python

import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
@pytest.mark.parametrize(
"to_concat_dtypes, result_dtype",
[
(["Int64", "Int64"], "Int64"),
(["UInt64", "UInt64"], "UInt64"),
(["Int8", "Int8"], "Int8"),
(["Int8", "Int16"], "Int16"),
(["UInt8", "Int8"], "Int16"),
(["Int32", "UInt32"], "Int64"),
(["Int64", "UInt64"], "Float64"),
(["Int64", "boolean"], "object"),
(["UInt8", "boolean"], "object"),
],
)
def test_concat_series(to_concat_dtypes, result_dtype):
# we expect the same dtypes as we would get with non-masked inputs,
# just masked where available.
result = pd.concat([pd.Series([0, 1, pd.NA], dtype=t) for t in to_concat_dtypes])
expected = pd.concat([pd.Series([0, 1, pd.NA], dtype=object)] * 2).astype(
result_dtype
)
tm.assert_series_equal(result, expected)
# order doesn't matter for result
result = pd.concat(
[pd.Series([0, 1, pd.NA], dtype=t) for t in to_concat_dtypes[::-1]]
)
expected = pd.concat([pd.Series([0, 1, pd.NA], dtype=object)] * 2).astype(
result_dtype
)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"to_concat_dtypes, result_dtype",
[
(["Int64", "int64"], "Int64"),
(["UInt64", "uint64"], "UInt64"),
(["Int8", "int8"], "Int8"),
(["Int8", "int16"], "Int16"),
(["UInt8", "int8"], "Int16"),
(["Int32", "uint32"], "Int64"),
(["Int64", "uint64"], "Float64"),
(["Int64", "bool"], "object"),
(["UInt8", "bool"], "object"),
],
)
def test_concat_series_with_numpy(to_concat_dtypes, result_dtype):
# we expect the same dtypes as we would get with non-masked inputs,
# just masked where available.
s1 = pd.Series([0, 1, pd.NA], dtype=to_concat_dtypes[0])
s2 = pd.Series(np.array([0, 1], dtype=to_concat_dtypes[1]))
result = pd.concat([s1, s2], ignore_index=True)
expected = pd.Series([0, 1, pd.NA, 0, 1], dtype=object).astype(result_dtype)
tm.assert_series_equal(result, expected)
# order doesn't matter for result
result = pd.concat([s2, s1], ignore_index=True)
expected = pd.Series([0, 1, 0, 1, pd.NA], dtype=object).astype(result_dtype)
tm.assert_series_equal(result, expected)