39 lines
1.2 KiB
Python
39 lines
1.2 KiB
Python
import pytest
|
|
|
|
import pandas as pd
|
|
from pandas.tests.arrays.masked_shared import (
|
|
ComparisonOps,
|
|
NumericOps,
|
|
)
|
|
|
|
|
|
class TestComparisonOps(NumericOps, ComparisonOps):
|
|
@pytest.mark.parametrize("other", [True, False, pd.NA, -1, 0, 1])
|
|
def test_scalar(self, other, comparison_op, dtype):
|
|
ComparisonOps.test_scalar(self, other, comparison_op, dtype)
|
|
|
|
def test_compare_to_int(self, dtype, comparison_op):
|
|
# GH 28930
|
|
op_name = f"__{comparison_op.__name__}__"
|
|
s1 = pd.Series([1, None, 3], dtype=dtype)
|
|
s2 = pd.Series([1, None, 3], dtype="float")
|
|
|
|
method = getattr(s1, op_name)
|
|
result = method(2)
|
|
|
|
method = getattr(s2, op_name)
|
|
expected = method(2).astype("boolean")
|
|
expected[s2.isna()] = pd.NA
|
|
|
|
self.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_equals():
|
|
# GH-30652
|
|
# equals is generally tested in /tests/extension/base/methods, but this
|
|
# specifically tests that two arrays of the same class but different dtype
|
|
# do not evaluate equal
|
|
a1 = pd.array([1, 2, None], dtype="Int64")
|
|
a2 = pd.array([1, 2, None], dtype="Int32")
|
|
assert a1.equals(a2) is False
|