233 lines
7.8 KiB
Python
233 lines
7.8 KiB
Python
import operator
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
import pandas._testing as tm
|
|
from pandas.core.arrays import FloatingArray
|
|
|
|
# Basic test for the arithmetic array ops
|
|
# -----------------------------------------------------------------------------
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"opname, exp",
|
|
[
|
|
("add", [1.1, 2.2, None, None, 5.5]),
|
|
("mul", [0.1, 0.4, None, None, 2.5]),
|
|
("sub", [0.9, 1.8, None, None, 4.5]),
|
|
("truediv", [10.0, 10.0, None, None, 10.0]),
|
|
("floordiv", [9.0, 9.0, None, None, 10.0]),
|
|
("mod", [0.1, 0.2, None, None, 0.0]),
|
|
],
|
|
ids=["add", "mul", "sub", "div", "floordiv", "mod"],
|
|
)
|
|
def test_array_op(dtype, opname, exp):
|
|
a = pd.array([1.0, 2.0, None, 4.0, 5.0], dtype=dtype)
|
|
b = pd.array([0.1, 0.2, 0.3, None, 0.5], dtype=dtype)
|
|
|
|
op = getattr(operator, opname)
|
|
|
|
result = op(a, b)
|
|
expected = pd.array(exp, dtype=dtype)
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("zero, negative", [(0, False), (0.0, False), (-0.0, True)])
|
|
def test_divide_by_zero(dtype, zero, negative):
|
|
# TODO pending NA/NaN discussion
|
|
# https://github.com/pandas-dev/pandas/issues/32265/
|
|
a = pd.array([0, 1, -1, None], dtype=dtype)
|
|
result = a / zero
|
|
expected = FloatingArray(
|
|
np.array([np.nan, np.inf, -np.inf, np.nan], dtype=dtype.numpy_dtype),
|
|
np.array([False, False, False, True]),
|
|
)
|
|
if negative:
|
|
expected *= -1
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
|
|
def test_pow_scalar(dtype):
|
|
a = pd.array([-1, 0, 1, None, 2], dtype=dtype)
|
|
result = a**0
|
|
expected = pd.array([1, 1, 1, 1, 1], dtype=dtype)
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
result = a**1
|
|
expected = pd.array([-1, 0, 1, None, 2], dtype=dtype)
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
result = a**pd.NA
|
|
expected = pd.array([None, None, 1, None, None], dtype=dtype)
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
result = a**np.nan
|
|
# TODO np.nan should be converted to pd.NA / missing before operation?
|
|
expected = FloatingArray(
|
|
np.array([np.nan, np.nan, 1, np.nan, np.nan], dtype=dtype.numpy_dtype),
|
|
mask=a._mask,
|
|
)
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
# reversed
|
|
a = a[1:] # Can't raise integers to negative powers.
|
|
|
|
result = 0**a
|
|
expected = pd.array([1, 0, None, 0], dtype=dtype)
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
result = 1**a
|
|
expected = pd.array([1, 1, 1, 1], dtype=dtype)
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
result = pd.NA**a
|
|
expected = pd.array([1, None, None, None], dtype=dtype)
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
result = np.nan**a
|
|
expected = FloatingArray(
|
|
np.array([1, np.nan, np.nan, np.nan], dtype=dtype.numpy_dtype), mask=a._mask
|
|
)
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
|
|
def test_pow_array(dtype):
|
|
a = pd.array([0, 0, 0, 1, 1, 1, None, None, None], dtype=dtype)
|
|
b = pd.array([0, 1, None, 0, 1, None, 0, 1, None], dtype=dtype)
|
|
result = a**b
|
|
expected = pd.array([1, 0, None, 1, 1, 1, 1, None, None], dtype=dtype)
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
|
|
def test_rpow_one_to_na():
|
|
# https://github.com/pandas-dev/pandas/issues/22022
|
|
# https://github.com/pandas-dev/pandas/issues/29997
|
|
arr = pd.array([np.nan, np.nan], dtype="Float64")
|
|
result = np.array([1.0, 2.0]) ** arr
|
|
expected = pd.array([1.0, np.nan], dtype="Float64")
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("other", [0, 0.5])
|
|
def test_arith_zero_dim_ndarray(other):
|
|
arr = pd.array([1, None, 2], dtype="Float64")
|
|
result = arr + np.array(other)
|
|
expected = arr + other
|
|
tm.assert_equal(result, expected)
|
|
|
|
|
|
# Test generic characteristics / errors
|
|
# -----------------------------------------------------------------------------
|
|
|
|
|
|
def test_error_invalid_values(data, all_arithmetic_operators):
|
|
|
|
op = all_arithmetic_operators
|
|
s = pd.Series(data)
|
|
ops = getattr(s, op)
|
|
|
|
# invalid scalars
|
|
msg = "|".join(
|
|
[
|
|
r"can only perform ops with numeric values",
|
|
r"FloatingArray cannot perform the operation mod",
|
|
"unsupported operand type",
|
|
"not all arguments converted during string formatting",
|
|
"can't multiply sequence by non-int of type 'float'",
|
|
"ufunc 'subtract' cannot use operands with types dtype",
|
|
r"can only concatenate str \(not \"float\"\) to str",
|
|
"ufunc '.*' not supported for the input types, and the inputs could not",
|
|
"ufunc '.*' did not contain a loop with signature matching types",
|
|
"Concatenation operation is not implemented for NumPy arrays",
|
|
]
|
|
)
|
|
with pytest.raises(TypeError, match=msg):
|
|
ops("foo")
|
|
with pytest.raises(TypeError, match=msg):
|
|
ops(pd.Timestamp("20180101"))
|
|
|
|
# invalid array-likes
|
|
with pytest.raises(TypeError, match=msg):
|
|
ops(pd.Series("foo", index=s.index))
|
|
|
|
msg = "|".join(
|
|
[
|
|
"can only perform ops with numeric values",
|
|
"cannot perform .* with this index type: DatetimeArray",
|
|
"Addition/subtraction of integers and integer-arrays "
|
|
"with DatetimeArray is no longer supported. *",
|
|
"unsupported operand type",
|
|
"not all arguments converted during string formatting",
|
|
"can't multiply sequence by non-int of type 'float'",
|
|
"ufunc 'subtract' cannot use operands with types dtype",
|
|
r"ufunc 'add' cannot use operands with types dtype\('<M8\[ns\]'\)",
|
|
r"ufunc 'add' cannot use operands with types dtype\('float\d{2}'\)",
|
|
"cannot subtract DatetimeArray from ndarray",
|
|
]
|
|
)
|
|
with pytest.raises(TypeError, match=msg):
|
|
ops(pd.Series(pd.date_range("20180101", periods=len(s))))
|
|
|
|
|
|
# Various
|
|
# -----------------------------------------------------------------------------
|
|
|
|
|
|
def test_cross_type_arithmetic():
|
|
|
|
df = pd.DataFrame(
|
|
{
|
|
"A": pd.array([1, 2, np.nan], dtype="Float64"),
|
|
"B": pd.array([1, np.nan, 3], dtype="Float32"),
|
|
"C": np.array([1, 2, 3], dtype="float64"),
|
|
}
|
|
)
|
|
|
|
result = df.A + df.C
|
|
expected = pd.Series([2, 4, np.nan], dtype="Float64")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = (df.A + df.C) * 3 == 12
|
|
expected = pd.Series([False, True, None], dtype="boolean")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = df.A + df.B
|
|
expected = pd.Series([2, np.nan, np.nan], dtype="Float64")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"source, neg_target, abs_target",
|
|
[
|
|
([1.1, 2.2, 3.3], [-1.1, -2.2, -3.3], [1.1, 2.2, 3.3]),
|
|
([1.1, 2.2, None], [-1.1, -2.2, None], [1.1, 2.2, None]),
|
|
([-1.1, 0.0, 1.1], [1.1, 0.0, -1.1], [1.1, 0.0, 1.1]),
|
|
],
|
|
)
|
|
def test_unary_float_operators(float_ea_dtype, source, neg_target, abs_target):
|
|
# GH38794
|
|
dtype = float_ea_dtype
|
|
arr = pd.array(source, dtype=dtype)
|
|
neg_result, pos_result, abs_result = -arr, +arr, abs(arr)
|
|
neg_target = pd.array(neg_target, dtype=dtype)
|
|
abs_target = pd.array(abs_target, dtype=dtype)
|
|
|
|
tm.assert_extension_array_equal(neg_result, neg_target)
|
|
tm.assert_extension_array_equal(pos_result, arr)
|
|
assert not tm.shares_memory(pos_result, arr)
|
|
tm.assert_extension_array_equal(abs_result, abs_target)
|
|
|
|
|
|
def test_bitwise(dtype):
|
|
left = pd.array([1, None, 3, 4], dtype=dtype)
|
|
right = pd.array([None, 3, 5, 4], dtype=dtype)
|
|
|
|
with pytest.raises(TypeError, match="unsupported operand type"):
|
|
left | right
|
|
with pytest.raises(TypeError, match="unsupported operand type"):
|
|
left & right
|
|
with pytest.raises(TypeError, match="unsupported operand type"):
|
|
left ^ right
|