aoc-2022/venv/Lib/site-packages/pandas/tests/arrays/floating/test_arithmetic.py

233 lines
7.8 KiB
Python

import operator
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays import FloatingArray
# Basic test for the arithmetic array ops
# -----------------------------------------------------------------------------
@pytest.mark.parametrize(
"opname, exp",
[
("add", [1.1, 2.2, None, None, 5.5]),
("mul", [0.1, 0.4, None, None, 2.5]),
("sub", [0.9, 1.8, None, None, 4.5]),
("truediv", [10.0, 10.0, None, None, 10.0]),
("floordiv", [9.0, 9.0, None, None, 10.0]),
("mod", [0.1, 0.2, None, None, 0.0]),
],
ids=["add", "mul", "sub", "div", "floordiv", "mod"],
)
def test_array_op(dtype, opname, exp):
a = pd.array([1.0, 2.0, None, 4.0, 5.0], dtype=dtype)
b = pd.array([0.1, 0.2, 0.3, None, 0.5], dtype=dtype)
op = getattr(operator, opname)
result = op(a, b)
expected = pd.array(exp, dtype=dtype)
tm.assert_extension_array_equal(result, expected)
@pytest.mark.parametrize("zero, negative", [(0, False), (0.0, False), (-0.0, True)])
def test_divide_by_zero(dtype, zero, negative):
# TODO pending NA/NaN discussion
# https://github.com/pandas-dev/pandas/issues/32265/
a = pd.array([0, 1, -1, None], dtype=dtype)
result = a / zero
expected = FloatingArray(
np.array([np.nan, np.inf, -np.inf, np.nan], dtype=dtype.numpy_dtype),
np.array([False, False, False, True]),
)
if negative:
expected *= -1
tm.assert_extension_array_equal(result, expected)
def test_pow_scalar(dtype):
a = pd.array([-1, 0, 1, None, 2], dtype=dtype)
result = a**0
expected = pd.array([1, 1, 1, 1, 1], dtype=dtype)
tm.assert_extension_array_equal(result, expected)
result = a**1
expected = pd.array([-1, 0, 1, None, 2], dtype=dtype)
tm.assert_extension_array_equal(result, expected)
result = a**pd.NA
expected = pd.array([None, None, 1, None, None], dtype=dtype)
tm.assert_extension_array_equal(result, expected)
result = a**np.nan
# TODO np.nan should be converted to pd.NA / missing before operation?
expected = FloatingArray(
np.array([np.nan, np.nan, 1, np.nan, np.nan], dtype=dtype.numpy_dtype),
mask=a._mask,
)
tm.assert_extension_array_equal(result, expected)
# reversed
a = a[1:] # Can't raise integers to negative powers.
result = 0**a
expected = pd.array([1, 0, None, 0], dtype=dtype)
tm.assert_extension_array_equal(result, expected)
result = 1**a
expected = pd.array([1, 1, 1, 1], dtype=dtype)
tm.assert_extension_array_equal(result, expected)
result = pd.NA**a
expected = pd.array([1, None, None, None], dtype=dtype)
tm.assert_extension_array_equal(result, expected)
result = np.nan**a
expected = FloatingArray(
np.array([1, np.nan, np.nan, np.nan], dtype=dtype.numpy_dtype), mask=a._mask
)
tm.assert_extension_array_equal(result, expected)
def test_pow_array(dtype):
a = pd.array([0, 0, 0, 1, 1, 1, None, None, None], dtype=dtype)
b = pd.array([0, 1, None, 0, 1, None, 0, 1, None], dtype=dtype)
result = a**b
expected = pd.array([1, 0, None, 1, 1, 1, 1, None, None], dtype=dtype)
tm.assert_extension_array_equal(result, expected)
def test_rpow_one_to_na():
# https://github.com/pandas-dev/pandas/issues/22022
# https://github.com/pandas-dev/pandas/issues/29997
arr = pd.array([np.nan, np.nan], dtype="Float64")
result = np.array([1.0, 2.0]) ** arr
expected = pd.array([1.0, np.nan], dtype="Float64")
tm.assert_extension_array_equal(result, expected)
@pytest.mark.parametrize("other", [0, 0.5])
def test_arith_zero_dim_ndarray(other):
arr = pd.array([1, None, 2], dtype="Float64")
result = arr + np.array(other)
expected = arr + other
tm.assert_equal(result, expected)
# Test generic characteristics / errors
# -----------------------------------------------------------------------------
def test_error_invalid_values(data, all_arithmetic_operators):
op = all_arithmetic_operators
s = pd.Series(data)
ops = getattr(s, op)
# invalid scalars
msg = "|".join(
[
r"can only perform ops with numeric values",
r"FloatingArray cannot perform the operation mod",
"unsupported operand type",
"not all arguments converted during string formatting",
"can't multiply sequence by non-int of type 'float'",
"ufunc 'subtract' cannot use operands with types dtype",
r"can only concatenate str \(not \"float\"\) to str",
"ufunc '.*' not supported for the input types, and the inputs could not",
"ufunc '.*' did not contain a loop with signature matching types",
"Concatenation operation is not implemented for NumPy arrays",
]
)
with pytest.raises(TypeError, match=msg):
ops("foo")
with pytest.raises(TypeError, match=msg):
ops(pd.Timestamp("20180101"))
# invalid array-likes
with pytest.raises(TypeError, match=msg):
ops(pd.Series("foo", index=s.index))
msg = "|".join(
[
"can only perform ops with numeric values",
"cannot perform .* with this index type: DatetimeArray",
"Addition/subtraction of integers and integer-arrays "
"with DatetimeArray is no longer supported. *",
"unsupported operand type",
"not all arguments converted during string formatting",
"can't multiply sequence by non-int of type 'float'",
"ufunc 'subtract' cannot use operands with types dtype",
r"ufunc 'add' cannot use operands with types dtype\('<M8\[ns\]'\)",
r"ufunc 'add' cannot use operands with types dtype\('float\d{2}'\)",
"cannot subtract DatetimeArray from ndarray",
]
)
with pytest.raises(TypeError, match=msg):
ops(pd.Series(pd.date_range("20180101", periods=len(s))))
# Various
# -----------------------------------------------------------------------------
def test_cross_type_arithmetic():
df = pd.DataFrame(
{
"A": pd.array([1, 2, np.nan], dtype="Float64"),
"B": pd.array([1, np.nan, 3], dtype="Float32"),
"C": np.array([1, 2, 3], dtype="float64"),
}
)
result = df.A + df.C
expected = pd.Series([2, 4, np.nan], dtype="Float64")
tm.assert_series_equal(result, expected)
result = (df.A + df.C) * 3 == 12
expected = pd.Series([False, True, None], dtype="boolean")
tm.assert_series_equal(result, expected)
result = df.A + df.B
expected = pd.Series([2, np.nan, np.nan], dtype="Float64")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"source, neg_target, abs_target",
[
([1.1, 2.2, 3.3], [-1.1, -2.2, -3.3], [1.1, 2.2, 3.3]),
([1.1, 2.2, None], [-1.1, -2.2, None], [1.1, 2.2, None]),
([-1.1, 0.0, 1.1], [1.1, 0.0, -1.1], [1.1, 0.0, 1.1]),
],
)
def test_unary_float_operators(float_ea_dtype, source, neg_target, abs_target):
# GH38794
dtype = float_ea_dtype
arr = pd.array(source, dtype=dtype)
neg_result, pos_result, abs_result = -arr, +arr, abs(arr)
neg_target = pd.array(neg_target, dtype=dtype)
abs_target = pd.array(abs_target, dtype=dtype)
tm.assert_extension_array_equal(neg_result, neg_target)
tm.assert_extension_array_equal(pos_result, arr)
assert not tm.shares_memory(pos_result, arr)
tm.assert_extension_array_equal(abs_result, abs_target)
def test_bitwise(dtype):
left = pd.array([1, None, 3, 4], dtype=dtype)
right = pd.array([None, 3, 5, 4], dtype=dtype)
with pytest.raises(TypeError, match="unsupported operand type"):
left | right
with pytest.raises(TypeError, match="unsupported operand type"):
left & right
with pytest.raises(TypeError, match="unsupported operand type"):
left ^ right