177 lines
5.4 KiB
Python
177 lines
5.4 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
from pandas.core.dtypes.dtypes import DatetimeTZDtype
|
|
|
|
import pandas as pd
|
|
from pandas import NaT
|
|
import pandas._testing as tm
|
|
from pandas.core.arrays import DatetimeArray
|
|
|
|
|
|
class TestReductions:
|
|
@pytest.fixture
|
|
def arr1d(self, tz_naive_fixture):
|
|
"""Fixture returning DatetimeArray with parametrized timezones"""
|
|
tz = tz_naive_fixture
|
|
dtype = DatetimeTZDtype(tz=tz) if tz is not None else np.dtype("M8[ns]")
|
|
arr = DatetimeArray._from_sequence(
|
|
[
|
|
"2000-01-03",
|
|
"2000-01-03",
|
|
"NaT",
|
|
"2000-01-02",
|
|
"2000-01-05",
|
|
"2000-01-04",
|
|
],
|
|
dtype=dtype,
|
|
)
|
|
return arr
|
|
|
|
def test_min_max(self, arr1d):
|
|
arr = arr1d
|
|
tz = arr.tz
|
|
|
|
result = arr.min()
|
|
expected = pd.Timestamp("2000-01-02", tz=tz)
|
|
assert result == expected
|
|
|
|
result = arr.max()
|
|
expected = pd.Timestamp("2000-01-05", tz=tz)
|
|
assert result == expected
|
|
|
|
result = arr.min(skipna=False)
|
|
assert result is NaT
|
|
|
|
result = arr.max(skipna=False)
|
|
assert result is NaT
|
|
|
|
@pytest.mark.parametrize("tz", [None, "US/Central"])
|
|
@pytest.mark.parametrize("skipna", [True, False])
|
|
def test_min_max_empty(self, skipna, tz):
|
|
dtype = DatetimeTZDtype(tz=tz) if tz is not None else np.dtype("M8[ns]")
|
|
arr = DatetimeArray._from_sequence([], dtype=dtype)
|
|
result = arr.min(skipna=skipna)
|
|
assert result is NaT
|
|
|
|
result = arr.max(skipna=skipna)
|
|
assert result is NaT
|
|
|
|
@pytest.mark.parametrize("tz", [None, "US/Central"])
|
|
@pytest.mark.parametrize("skipna", [True, False])
|
|
def test_median_empty(self, skipna, tz):
|
|
dtype = DatetimeTZDtype(tz=tz) if tz is not None else np.dtype("M8[ns]")
|
|
arr = DatetimeArray._from_sequence([], dtype=dtype)
|
|
result = arr.median(skipna=skipna)
|
|
assert result is NaT
|
|
|
|
arr = arr.reshape(0, 3)
|
|
result = arr.median(axis=0, skipna=skipna)
|
|
expected = type(arr)._from_sequence([NaT, NaT, NaT], dtype=arr.dtype)
|
|
tm.assert_equal(result, expected)
|
|
|
|
result = arr.median(axis=1, skipna=skipna)
|
|
expected = type(arr)._from_sequence([], dtype=arr.dtype)
|
|
tm.assert_equal(result, expected)
|
|
|
|
def test_median(self, arr1d):
|
|
arr = arr1d
|
|
|
|
result = arr.median()
|
|
assert result == arr[0]
|
|
result = arr.median(skipna=False)
|
|
assert result is NaT
|
|
|
|
result = arr.dropna().median(skipna=False)
|
|
assert result == arr[0]
|
|
|
|
result = arr.median(axis=0)
|
|
assert result == arr[0]
|
|
|
|
def test_median_axis(self, arr1d):
|
|
arr = arr1d
|
|
assert arr.median(axis=0) == arr.median()
|
|
assert arr.median(axis=0, skipna=False) is NaT
|
|
|
|
msg = r"abs\(axis\) must be less than ndim"
|
|
with pytest.raises(ValueError, match=msg):
|
|
arr.median(axis=1)
|
|
|
|
@pytest.mark.filterwarnings("ignore:All-NaN slice encountered:RuntimeWarning")
|
|
def test_median_2d(self, arr1d):
|
|
arr = arr1d.reshape(1, -1)
|
|
|
|
# axis = None
|
|
assert arr.median() == arr1d.median()
|
|
assert arr.median(skipna=False) is NaT
|
|
|
|
# axis = 0
|
|
result = arr.median(axis=0)
|
|
expected = arr1d
|
|
tm.assert_equal(result, expected)
|
|
|
|
# Since column 3 is all-NaT, we get NaT there with or without skipna
|
|
result = arr.median(axis=0, skipna=False)
|
|
expected = arr1d
|
|
tm.assert_equal(result, expected)
|
|
|
|
# axis = 1
|
|
result = arr.median(axis=1)
|
|
expected = type(arr)._from_sequence([arr1d.median()])
|
|
tm.assert_equal(result, expected)
|
|
|
|
result = arr.median(axis=1, skipna=False)
|
|
expected = type(arr)._from_sequence([NaT], dtype=arr.dtype)
|
|
tm.assert_equal(result, expected)
|
|
|
|
def test_mean(self, arr1d):
|
|
arr = arr1d
|
|
|
|
# manually verified result
|
|
expected = arr[0] + 0.4 * pd.Timedelta(days=1)
|
|
|
|
result = arr.mean()
|
|
assert result == expected
|
|
result = arr.mean(skipna=False)
|
|
assert result is NaT
|
|
|
|
result = arr.dropna().mean(skipna=False)
|
|
assert result == expected
|
|
|
|
result = arr.mean(axis=0)
|
|
assert result == expected
|
|
|
|
def test_mean_2d(self):
|
|
dti = pd.date_range("2016-01-01", periods=6, tz="US/Pacific")
|
|
dta = dti._data.reshape(3, 2)
|
|
|
|
result = dta.mean(axis=0)
|
|
expected = dta[1]
|
|
tm.assert_datetime_array_equal(result, expected)
|
|
|
|
result = dta.mean(axis=1)
|
|
expected = dta[:, 0] + pd.Timedelta(hours=12)
|
|
tm.assert_datetime_array_equal(result, expected)
|
|
|
|
result = dta.mean(axis=None)
|
|
expected = dti.mean()
|
|
assert result == expected
|
|
|
|
@pytest.mark.parametrize("skipna", [True, False])
|
|
def test_mean_empty(self, arr1d, skipna):
|
|
arr = arr1d[:0]
|
|
|
|
assert arr.mean(skipna=skipna) is NaT
|
|
|
|
arr2d = arr.reshape(0, 3)
|
|
result = arr2d.mean(axis=0, skipna=skipna)
|
|
expected = DatetimeArray._from_sequence([NaT, NaT, NaT], dtype=arr.dtype)
|
|
tm.assert_datetime_array_equal(result, expected)
|
|
|
|
result = arr2d.mean(axis=1, skipna=skipna)
|
|
expected = arr # i.e. 1D, empty
|
|
tm.assert_datetime_array_equal(result, expected)
|
|
|
|
result = arr2d.mean(axis=None, skipna=skipna)
|
|
assert result is NaT
|