aoc-2022/venv/Lib/site-packages/pandas/tests/apply/test_invalid_arg.py

370 lines
11 KiB
Python

# Tests specifically aimed at detecting bad arguments.
# This file is organized by reason for exception.
# 1. always invalid argument values
# 2. missing column(s)
# 3. incompatible ops/dtype/args/kwargs
# 4. invalid result shape/type
# If your test does not fit into one of these categories, add to this list.
from itertools import chain
import re
import numpy as np
import pytest
from pandas.errors import SpecificationError
from pandas import (
Categorical,
DataFrame,
Series,
date_range,
notna,
)
import pandas._testing as tm
@pytest.mark.parametrize("result_type", ["foo", 1])
def test_result_type_error(result_type, int_frame_const_col):
# allowed result_type
df = int_frame_const_col
msg = (
"invalid value for result_type, must be one of "
"{None, 'reduce', 'broadcast', 'expand'}"
)
with pytest.raises(ValueError, match=msg):
df.apply(lambda x: [1, 2, 3], axis=1, result_type=result_type)
def test_apply_invalid_axis_value():
df = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=["a", "a", "c"])
msg = "No axis named 2 for object type DataFrame"
with pytest.raises(ValueError, match=msg):
df.apply(lambda x: x, 2)
def test_applymap_invalid_na_action(float_frame):
# GH 23803
with pytest.raises(ValueError, match="na_action must be .*Got 'abc'"):
float_frame.applymap(lambda x: len(str(x)), na_action="abc")
def test_agg_raises():
# GH 26513
df = DataFrame({"A": [0, 1], "B": [1, 2]})
msg = "Must provide"
with pytest.raises(TypeError, match=msg):
df.agg()
def test_map_with_invalid_na_action_raises():
# https://github.com/pandas-dev/pandas/issues/32815
s = Series([1, 2, 3])
msg = "na_action must either be 'ignore' or None"
with pytest.raises(ValueError, match=msg):
s.map(lambda x: x, na_action="____")
@pytest.mark.parametrize("input_na_action", ["____", True])
def test_map_arg_is_dict_with_invalid_na_action_raises(input_na_action):
# https://github.com/pandas-dev/pandas/issues/46588
s = Series([1, 2, 3])
msg = f"na_action must either be 'ignore' or None, {input_na_action} was passed"
with pytest.raises(ValueError, match=msg):
s.map({1: 2}, na_action=input_na_action)
def test_map_categorical_na_action():
values = Categorical(list("ABBABCD"), categories=list("DCBA"), ordered=True)
s = Series(values, name="XX", index=list("abcdefg"))
with pytest.raises(NotImplementedError, match=tm.EMPTY_STRING_PATTERN):
s.map(lambda x: x, na_action="ignore")
def test_map_datetimetz_na_action():
values = date_range("2011-01-01", "2011-01-02", freq="H").tz_localize("Asia/Tokyo")
s = Series(values, name="XX")
with pytest.raises(NotImplementedError, match=tm.EMPTY_STRING_PATTERN):
s.map(lambda x: x, na_action="ignore")
@pytest.mark.parametrize("box", [DataFrame, Series])
@pytest.mark.parametrize("method", ["apply", "agg", "transform"])
@pytest.mark.parametrize("func", [{"A": {"B": "sum"}}, {"A": {"B": ["sum"]}}])
def test_nested_renamer(box, method, func):
# GH 35964
obj = box({"A": [1]})
match = "nested renamer is not supported"
with pytest.raises(SpecificationError, match=match):
getattr(obj, method)(func)
@pytest.mark.parametrize(
"renamer",
[{"foo": ["min", "max"]}, {"foo": ["min", "max"], "bar": ["sum", "mean"]}],
)
def test_series_nested_renamer(renamer):
s = Series(range(6), dtype="int64", name="series")
msg = "nested renamer is not supported"
with pytest.raises(SpecificationError, match=msg):
s.agg(renamer)
def test_apply_dict_depr():
tsdf = DataFrame(
np.random.randn(10, 3),
columns=["A", "B", "C"],
index=date_range("1/1/2000", periods=10),
)
msg = "nested renamer is not supported"
with pytest.raises(SpecificationError, match=msg):
tsdf.A.agg({"foo": ["sum", "mean"]})
@pytest.mark.parametrize("method", ["agg", "transform"])
def test_dict_nested_renaming_depr(method):
df = DataFrame({"A": range(5), "B": 5})
# nested renaming
msg = r"nested renamer is not supported"
with pytest.raises(SpecificationError, match=msg):
getattr(df, method)({"A": {"foo": "min"}, "B": {"bar": "max"}})
@pytest.mark.parametrize("method", ["apply", "agg", "transform"])
@pytest.mark.parametrize("func", [{"B": "sum"}, {"B": ["sum"]}])
def test_missing_column(method, func):
# GH 40004
obj = DataFrame({"A": [1]})
match = re.escape("Column(s) ['B'] do not exist")
with pytest.raises(KeyError, match=match):
getattr(obj, method)(func)
def test_transform_mixed_column_name_dtypes():
# GH39025
df = DataFrame({"a": ["1"]})
msg = r"Column\(s\) \[1, 'b'\] do not exist"
with pytest.raises(KeyError, match=msg):
df.transform({"a": int, 1: str, "b": int})
@pytest.mark.parametrize(
"how, args", [("pct_change", ()), ("nsmallest", (1, ["a", "b"])), ("tail", 1)]
)
def test_apply_str_axis_1_raises(how, args):
# GH 39211 - some ops don't support axis=1
df = DataFrame({"a": [1, 2], "b": [3, 4]})
msg = f"Operation {how} does not support axis=1"
with pytest.raises(ValueError, match=msg):
df.apply(how, axis=1, args=args)
def test_transform_axis_1_raises():
# GH 35964
msg = "No axis named 1 for object type Series"
with pytest.raises(ValueError, match=msg):
Series([1]).transform("sum", axis=1)
def test_apply_modify_traceback():
data = DataFrame(
{
"A": [
"foo",
"foo",
"foo",
"foo",
"bar",
"bar",
"bar",
"bar",
"foo",
"foo",
"foo",
],
"B": [
"one",
"one",
"one",
"two",
"one",
"one",
"one",
"two",
"two",
"two",
"one",
],
"C": [
"dull",
"dull",
"shiny",
"dull",
"dull",
"shiny",
"shiny",
"dull",
"shiny",
"shiny",
"shiny",
],
"D": np.random.randn(11),
"E": np.random.randn(11),
"F": np.random.randn(11),
}
)
data.loc[4, "C"] = np.nan
def transform(row):
if row["C"].startswith("shin") and row["A"] == "foo":
row["D"] = 7
return row
def transform2(row):
if notna(row["C"]) and row["C"].startswith("shin") and row["A"] == "foo":
row["D"] = 7
return row
msg = "'float' object has no attribute 'startswith'"
with pytest.raises(AttributeError, match=msg):
data.apply(transform, axis=1)
@pytest.mark.parametrize(
"df, func, expected",
tm.get_cython_table_params(
DataFrame([["a", "b"], ["b", "a"]]), [["cumprod", TypeError]]
),
)
def test_agg_cython_table_raises_frame(df, func, expected, axis):
# GH 21224
msg = "can't multiply sequence by non-int of type 'str'"
with pytest.raises(expected, match=msg):
df.agg(func, axis=axis)
@pytest.mark.parametrize(
"series, func, expected",
chain(
tm.get_cython_table_params(
Series("a b c".split()),
[
("mean", TypeError), # mean raises TypeError
("prod", TypeError),
("std", TypeError),
("var", TypeError),
("median", TypeError),
("cumprod", TypeError),
],
)
),
)
def test_agg_cython_table_raises_series(series, func, expected):
# GH21224
msg = r"[Cc]ould not convert|can't multiply sequence by non-int of type"
with pytest.raises(expected, match=msg):
# e.g. Series('a b'.split()).cumprod() will raise
series.agg(func)
def test_agg_none_to_type():
# GH 40543
df = DataFrame({"a": [None]})
msg = re.escape("int() argument must be a string")
with pytest.raises(TypeError, match=msg):
df.agg({"a": int})
def test_transform_none_to_type():
# GH#34377
df = DataFrame({"a": [None]})
msg = "Transform function failed"
with pytest.raises(TypeError, match=msg):
df.transform({"a": int})
@pytest.mark.parametrize(
"func",
[
lambda x: np.array([1, 2]).reshape(-1, 2),
lambda x: [1, 2],
lambda x: Series([1, 2]),
],
)
def test_apply_broadcast_error(int_frame_const_col, func):
df = int_frame_const_col
# > 1 ndim
msg = "too many dims to broadcast|cannot broadcast result"
with pytest.raises(ValueError, match=msg):
df.apply(func, axis=1, result_type="broadcast")
def test_transform_and_agg_err_agg(axis, float_frame):
# cannot both transform and agg
msg = "cannot combine transform and aggregation operations"
with pytest.raises(ValueError, match=msg):
with np.errstate(all="ignore"):
float_frame.agg(["max", "sqrt"], axis=axis)
@pytest.mark.parametrize(
"func, msg",
[
(["sqrt", "max"], "cannot combine transform and aggregation"),
(
{"foo": np.sqrt, "bar": "sum"},
"cannot perform both aggregation and transformation",
),
],
)
def test_transform_and_agg_err_series(string_series, func, msg):
# we are trying to transform with an aggregator
with pytest.raises(ValueError, match=msg):
with np.errstate(all="ignore"):
string_series.agg(func)
@pytest.mark.parametrize("func", [["max", "min"], ["max", "sqrt"]])
def test_transform_wont_agg_frame(axis, float_frame, func):
# GH 35964
# cannot both transform and agg
msg = "Function did not transform"
with pytest.raises(ValueError, match=msg):
float_frame.transform(func, axis=axis)
@pytest.mark.parametrize("func", [["min", "max"], ["sqrt", "max"]])
def test_transform_wont_agg_series(string_series, func):
# GH 35964
# we are trying to transform with an aggregator
msg = "Function did not transform"
warn = RuntimeWarning if func[0] == "sqrt" else None
warn_msg = "invalid value encountered in sqrt"
with pytest.raises(ValueError, match=msg):
with tm.assert_produces_warning(warn, match=warn_msg):
string_series.transform(func)
@pytest.mark.parametrize(
"op_wrapper", [lambda x: x, lambda x: [x], lambda x: {"A": x}, lambda x: {"A": [x]}]
)
@pytest.mark.filterwarnings("ignore:.*Select only valid:FutureWarning")
def test_transform_reducer_raises(all_reductions, frame_or_series, op_wrapper):
# GH 35964
op = op_wrapper(all_reductions)
obj = DataFrame({"A": [1, 2, 3]})
obj = tm.get_obj(obj, frame_or_series)
msg = "Function did not transform"
with pytest.raises(ValueError, match=msg):
obj.transform(op)