aoc-2022/venv/Lib/site-packages/pandas/io/json/_table_schema.py

378 lines
11 KiB
Python

"""
Table Schema builders
https://specs.frictionlessdata.io/json-table-schema/
"""
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Any,
cast,
)
import warnings
import pandas._libs.json as json
from pandas._typing import (
DtypeObj,
JSONSerializable,
)
from pandas.util._exceptions import find_stack_level
from pandas.core.dtypes.base import _registry as registry
from pandas.core.dtypes.common import (
is_bool_dtype,
is_categorical_dtype,
is_datetime64_dtype,
is_datetime64tz_dtype,
is_extension_array_dtype,
is_integer_dtype,
is_numeric_dtype,
is_period_dtype,
is_string_dtype,
is_timedelta64_dtype,
)
from pandas.core.dtypes.dtypes import CategoricalDtype
from pandas import DataFrame
import pandas.core.common as com
if TYPE_CHECKING:
from pandas import Series
from pandas.core.indexes.multi import MultiIndex
loads = json.loads
TABLE_SCHEMA_VERSION = "1.4.0"
def as_json_table_type(x: DtypeObj) -> str:
"""
Convert a NumPy / pandas type to its corresponding json_table.
Parameters
----------
x : np.dtype or ExtensionDtype
Returns
-------
str
the Table Schema data types
Notes
-----
This table shows the relationship between NumPy / pandas dtypes,
and Table Schema dtypes.
============== =================
Pandas type Table Schema type
============== =================
int64 integer
float64 number
bool boolean
datetime64[ns] datetime
timedelta64[ns] duration
object str
categorical any
=============== =================
"""
if is_integer_dtype(x):
return "integer"
elif is_bool_dtype(x):
return "boolean"
elif is_numeric_dtype(x):
return "number"
elif is_datetime64_dtype(x) or is_datetime64tz_dtype(x) or is_period_dtype(x):
return "datetime"
elif is_timedelta64_dtype(x):
return "duration"
elif is_categorical_dtype(x):
return "any"
elif is_extension_array_dtype(x):
return "any"
elif is_string_dtype(x):
return "string"
else:
return "any"
def set_default_names(data):
"""Sets index names to 'index' for regular, or 'level_x' for Multi"""
if com.all_not_none(*data.index.names):
nms = data.index.names
if len(nms) == 1 and data.index.name == "index":
warnings.warn(
"Index name of 'index' is not round-trippable.",
stacklevel=find_stack_level(),
)
elif len(nms) > 1 and any(x.startswith("level_") for x in nms):
warnings.warn(
"Index names beginning with 'level_' are not round-trippable.",
stacklevel=find_stack_level(),
)
return data
data = data.copy()
if data.index.nlevels > 1:
data.index.names = com.fill_missing_names(data.index.names)
else:
data.index.name = data.index.name or "index"
return data
def convert_pandas_type_to_json_field(arr) -> dict[str, JSONSerializable]:
dtype = arr.dtype
name: JSONSerializable
if arr.name is None:
name = "values"
else:
name = arr.name
field: dict[str, JSONSerializable] = {
"name": name,
"type": as_json_table_type(dtype),
}
if is_categorical_dtype(dtype):
cats = dtype.categories
ordered = dtype.ordered
field["constraints"] = {"enum": list(cats)}
field["ordered"] = ordered
elif is_period_dtype(dtype):
field["freq"] = dtype.freq.freqstr
elif is_datetime64tz_dtype(dtype):
field["tz"] = dtype.tz.zone
elif is_extension_array_dtype(dtype):
field["extDtype"] = dtype.name
return field
def convert_json_field_to_pandas_type(field) -> str | CategoricalDtype:
"""
Converts a JSON field descriptor into its corresponding NumPy / pandas type
Parameters
----------
field
A JSON field descriptor
Returns
-------
dtype
Raises
------
ValueError
If the type of the provided field is unknown or currently unsupported
Examples
--------
>>> convert_json_field_to_pandas_type({"name": "an_int", "type": "integer"})
'int64'
>>> convert_json_field_to_pandas_type(
... {
... "name": "a_categorical",
... "type": "any",
... "constraints": {"enum": ["a", "b", "c"]},
... "ordered": True,
... }
... )
CategoricalDtype(categories=['a', 'b', 'c'], ordered=True)
>>> convert_json_field_to_pandas_type({"name": "a_datetime", "type": "datetime"})
'datetime64[ns]'
>>> convert_json_field_to_pandas_type(
... {"name": "a_datetime_with_tz", "type": "datetime", "tz": "US/Central"}
... )
'datetime64[ns, US/Central]'
"""
typ = field["type"]
if typ == "string":
return "object"
elif typ == "integer":
return "int64"
elif typ == "number":
return "float64"
elif typ == "boolean":
return "bool"
elif typ == "duration":
return "timedelta64"
elif typ == "datetime":
if field.get("tz"):
return f"datetime64[ns, {field['tz']}]"
elif field.get("freq"):
# GH#47747 using datetime over period to minimize the change surface
return f"period[{field['freq']}]"
else:
return "datetime64[ns]"
elif typ == "any":
if "constraints" in field and "ordered" in field:
return CategoricalDtype(
categories=field["constraints"]["enum"], ordered=field["ordered"]
)
elif "extDtype" in field:
return registry.find(field["extDtype"])
else:
return "object"
raise ValueError(f"Unsupported or invalid field type: {typ}")
def build_table_schema(
data: DataFrame | Series,
index: bool = True,
primary_key: bool | None = None,
version: bool = True,
) -> dict[str, JSONSerializable]:
"""
Create a Table schema from ``data``.
Parameters
----------
data : Series, DataFrame
index : bool, default True
Whether to include ``data.index`` in the schema.
primary_key : bool or None, default True
Column names to designate as the primary key.
The default `None` will set `'primaryKey'` to the index
level or levels if the index is unique.
version : bool, default True
Whether to include a field `pandas_version` with the version
of pandas that last revised the table schema. This version
can be different from the installed pandas version.
Returns
-------
schema : dict
Notes
-----
See `Table Schema
<https://pandas.pydata.org/docs/user_guide/io.html#table-schema>`__ for
conversion types.
Timedeltas as converted to ISO8601 duration format with
9 decimal places after the seconds field for nanosecond precision.
Categoricals are converted to the `any` dtype, and use the `enum` field
constraint to list the allowed values. The `ordered` attribute is included
in an `ordered` field.
Examples
--------
>>> df = pd.DataFrame(
... {'A': [1, 2, 3],
... 'B': ['a', 'b', 'c'],
... 'C': pd.date_range('2016-01-01', freq='d', periods=3),
... }, index=pd.Index(range(3), name='idx'))
>>> build_table_schema(df)
{'fields': \
[{'name': 'idx', 'type': 'integer'}, \
{'name': 'A', 'type': 'integer'}, \
{'name': 'B', 'type': 'string'}, \
{'name': 'C', 'type': 'datetime'}], \
'primaryKey': ['idx'], \
'pandas_version': '1.4.0'}
"""
if index is True:
data = set_default_names(data)
schema: dict[str, Any] = {}
fields = []
if index:
if data.index.nlevels > 1:
data.index = cast("MultiIndex", data.index)
for level, name in zip(data.index.levels, data.index.names):
new_field = convert_pandas_type_to_json_field(level)
new_field["name"] = name
fields.append(new_field)
else:
fields.append(convert_pandas_type_to_json_field(data.index))
if data.ndim > 1:
for column, s in data.items():
fields.append(convert_pandas_type_to_json_field(s))
else:
fields.append(convert_pandas_type_to_json_field(data))
schema["fields"] = fields
if index and data.index.is_unique and primary_key is None:
if data.index.nlevels == 1:
schema["primaryKey"] = [data.index.name]
else:
schema["primaryKey"] = data.index.names
elif primary_key is not None:
schema["primaryKey"] = primary_key
if version:
schema["pandas_version"] = TABLE_SCHEMA_VERSION
return schema
def parse_table_schema(json, precise_float):
"""
Builds a DataFrame from a given schema
Parameters
----------
json :
A JSON table schema
precise_float : bool
Flag controlling precision when decoding string to double values, as
dictated by ``read_json``
Returns
-------
df : DataFrame
Raises
------
NotImplementedError
If the JSON table schema contains either timezone or timedelta data
Notes
-----
Because :func:`DataFrame.to_json` uses the string 'index' to denote a
name-less :class:`Index`, this function sets the name of the returned
:class:`DataFrame` to ``None`` when said string is encountered with a
normal :class:`Index`. For a :class:`MultiIndex`, the same limitation
applies to any strings beginning with 'level_'. Therefore, an
:class:`Index` name of 'index' and :class:`MultiIndex` names starting
with 'level_' are not supported.
See Also
--------
build_table_schema : Inverse function.
pandas.read_json
"""
table = loads(json, precise_float=precise_float)
col_order = [field["name"] for field in table["schema"]["fields"]]
df = DataFrame(table["data"], columns=col_order)[col_order]
dtypes = {
field["name"]: convert_json_field_to_pandas_type(field)
for field in table["schema"]["fields"]
}
# No ISO constructor for Timedelta as of yet, so need to raise
if "timedelta64" in dtypes.values():
raise NotImplementedError(
'table="orient" can not yet read ISO-formatted Timedelta data'
)
df = df.astype(dtypes)
if "primaryKey" in table["schema"]:
df = df.set_index(table["schema"]["primaryKey"])
if len(df.index.names) == 1:
if df.index.name == "index":
df.index.name = None
else:
df.index.names = [
None if x.startswith("level_") else x for x in df.index.names
]
return df