aoc-2022/venv/Lib/site-packages/pandas/io/date_converters.py

132 lines
3.8 KiB
Python

"""This module is designed for community supported date conversion functions"""
from __future__ import annotations
import warnings
import numpy as np
from pandas._libs.tslibs import parsing
from pandas._typing import npt
from pandas.util._exceptions import find_stack_level
def parse_date_time(date_col, time_col) -> npt.NDArray[np.object_]:
"""
Parse columns with dates and times into a single datetime column.
.. deprecated:: 1.2
"""
warnings.warn(
"""
Use pd.to_datetime(date_col + " " + time_col) instead to get a Pandas Series.
Use pd.to_datetime(date_col + " " + time_col).to_pydatetime() instead to get a Numpy array.
""", # noqa: E501
FutureWarning,
stacklevel=find_stack_level(),
)
date_col = _maybe_cast(date_col)
time_col = _maybe_cast(time_col)
return parsing.try_parse_date_and_time(date_col, time_col)
def parse_date_fields(year_col, month_col, day_col) -> npt.NDArray[np.object_]:
"""
Parse columns with years, months and days into a single date column.
.. deprecated:: 1.2
"""
warnings.warn(
"""
Use pd.to_datetime({"year": year_col, "month": month_col, "day": day_col}) instead to get a Pandas Series.
Use ser = pd.to_datetime({"year": year_col, "month": month_col, "day": day_col}) and
np.array([s.to_pydatetime() for s in ser]) instead to get a Numpy array.
""", # noqa: E501
FutureWarning,
stacklevel=find_stack_level(),
)
year_col = _maybe_cast(year_col)
month_col = _maybe_cast(month_col)
day_col = _maybe_cast(day_col)
return parsing.try_parse_year_month_day(year_col, month_col, day_col)
def parse_all_fields(
year_col, month_col, day_col, hour_col, minute_col, second_col
) -> npt.NDArray[np.object_]:
"""
Parse columns with datetime information into a single datetime column.
.. deprecated:: 1.2
"""
warnings.warn(
"""
Use pd.to_datetime({"year": year_col, "month": month_col, "day": day_col,
"hour": hour_col, "minute": minute_col, second": second_col}) instead to get a Pandas Series.
Use ser = pd.to_datetime({"year": year_col, "month": month_col, "day": day_col,
"hour": hour_col, "minute": minute_col, second": second_col}) and
np.array([s.to_pydatetime() for s in ser]) instead to get a Numpy array.
""", # noqa: E501
FutureWarning,
stacklevel=find_stack_level(),
)
year_col = _maybe_cast(year_col)
month_col = _maybe_cast(month_col)
day_col = _maybe_cast(day_col)
hour_col = _maybe_cast(hour_col)
minute_col = _maybe_cast(minute_col)
second_col = _maybe_cast(second_col)
return parsing.try_parse_datetime_components(
year_col, month_col, day_col, hour_col, minute_col, second_col
)
def generic_parser(parse_func, *cols) -> np.ndarray:
"""
Use dateparser to parse columns with data information into a single datetime column.
.. deprecated:: 1.2
"""
warnings.warn(
"""
Use pd.to_datetime instead.
""",
FutureWarning,
stacklevel=find_stack_level(),
)
N = _check_columns(cols)
results = np.empty(N, dtype=object)
for i in range(N):
args = [c[i] for c in cols]
results[i] = parse_func(*args)
return results
def _maybe_cast(arr: np.ndarray) -> np.ndarray:
if not arr.dtype.type == np.object_:
arr = np.array(arr, dtype=object)
return arr
def _check_columns(cols) -> int:
if not len(cols):
raise AssertionError("There must be at least 1 column")
head, tail = cols[0], cols[1:]
N = len(head)
for i, n in enumerate(map(len, tail)):
if n != N:
raise AssertionError(
f"All columns must have the same length: {N}; column {i} has length {n}"
)
return N