213 lines
5.8 KiB
Cython
213 lines
5.8 KiB
Cython
import cmath
|
|
import math
|
|
|
|
import numpy as np
|
|
|
|
from numpy cimport import_array
|
|
|
|
import_array()
|
|
|
|
from pandas._libs.util cimport (
|
|
is_array,
|
|
is_complex_object,
|
|
is_real_number_object,
|
|
)
|
|
|
|
from pandas.core.dtypes.common import is_dtype_equal
|
|
from pandas.core.dtypes.missing import (
|
|
array_equivalent,
|
|
isna,
|
|
)
|
|
|
|
|
|
cdef bint isiterable(obj):
|
|
return hasattr(obj, '__iter__')
|
|
|
|
|
|
cdef bint has_length(obj):
|
|
return hasattr(obj, '__len__')
|
|
|
|
|
|
cdef bint is_dictlike(obj):
|
|
return hasattr(obj, 'keys') and hasattr(obj, '__getitem__')
|
|
|
|
|
|
cpdef assert_dict_equal(a, b, bint compare_keys=True):
|
|
assert is_dictlike(a) and is_dictlike(b), (
|
|
"Cannot compare dict objects, one or both is not dict-like"
|
|
)
|
|
|
|
a_keys = frozenset(a.keys())
|
|
b_keys = frozenset(b.keys())
|
|
|
|
if compare_keys:
|
|
assert a_keys == b_keys
|
|
|
|
for k in a_keys:
|
|
assert_almost_equal(a[k], b[k])
|
|
|
|
return True
|
|
|
|
|
|
cpdef assert_almost_equal(a, b,
|
|
rtol=1.e-5, atol=1.e-8,
|
|
bint check_dtype=True,
|
|
obj=None, lobj=None, robj=None, index_values=None):
|
|
"""
|
|
Check that left and right objects are almost equal.
|
|
|
|
Parameters
|
|
----------
|
|
a : object
|
|
b : object
|
|
rtol : float, default 1e-5
|
|
Relative tolerance.
|
|
|
|
.. versionadded:: 1.1.0
|
|
atol : float, default 1e-8
|
|
Absolute tolerance.
|
|
|
|
.. versionadded:: 1.1.0
|
|
check_dtype: bool, default True
|
|
check dtype if both a and b are np.ndarray.
|
|
obj : str, default None
|
|
Specify object name being compared, internally used to show
|
|
appropriate assertion message.
|
|
lobj : str, default None
|
|
Specify left object name being compared, internally used to show
|
|
appropriate assertion message.
|
|
robj : str, default None
|
|
Specify right object name being compared, internally used to show
|
|
appropriate assertion message.
|
|
index_values : ndarray, default None
|
|
Specify shared index values of objects being compared, internally used
|
|
to show appropriate assertion message.
|
|
|
|
.. versionadded:: 1.1.0
|
|
|
|
"""
|
|
cdef:
|
|
double diff = 0.0
|
|
Py_ssize_t i, na, nb
|
|
double fa, fb
|
|
bint is_unequal = False, a_is_ndarray, b_is_ndarray
|
|
|
|
if lobj is None:
|
|
lobj = a
|
|
if robj is None:
|
|
robj = b
|
|
|
|
if isinstance(a, dict) or isinstance(b, dict):
|
|
return assert_dict_equal(a, b)
|
|
|
|
if isinstance(a, str) or isinstance(b, str):
|
|
assert a == b, f"{a} != {b}"
|
|
return True
|
|
|
|
a_is_ndarray = is_array(a)
|
|
b_is_ndarray = is_array(b)
|
|
|
|
if obj is None:
|
|
if a_is_ndarray or b_is_ndarray:
|
|
obj = 'numpy array'
|
|
else:
|
|
obj = 'Iterable'
|
|
|
|
if isiterable(a):
|
|
|
|
if not isiterable(b):
|
|
from pandas._testing import assert_class_equal
|
|
|
|
# classes can't be the same, to raise error
|
|
assert_class_equal(a, b, obj=obj)
|
|
|
|
assert has_length(a) and has_length(b), (
|
|
f"Can't compare objects without length, one or both is invalid: ({a}, {b})"
|
|
)
|
|
|
|
if a_is_ndarray and b_is_ndarray:
|
|
na, nb = a.size, b.size
|
|
if a.shape != b.shape:
|
|
from pandas._testing import raise_assert_detail
|
|
raise_assert_detail(
|
|
obj, f'{obj} shapes are different', a.shape, b.shape)
|
|
|
|
if check_dtype and not is_dtype_equal(a.dtype, b.dtype):
|
|
from pandas._testing import assert_attr_equal
|
|
assert_attr_equal('dtype', a, b, obj=obj)
|
|
|
|
if array_equivalent(a, b, strict_nan=True):
|
|
return True
|
|
|
|
else:
|
|
na, nb = len(a), len(b)
|
|
|
|
if na != nb:
|
|
from pandas._testing import raise_assert_detail
|
|
|
|
# if we have a small diff set, print it
|
|
if abs(na - nb) < 10:
|
|
r = list(set(a) ^ set(b))
|
|
else:
|
|
r = None
|
|
|
|
raise_assert_detail(obj, f"{obj} length are different", na, nb, r)
|
|
|
|
for i in range(len(a)):
|
|
try:
|
|
assert_almost_equal(a[i], b[i], rtol=rtol, atol=atol)
|
|
except AssertionError:
|
|
is_unequal = True
|
|
diff += 1
|
|
|
|
if is_unequal:
|
|
from pandas._testing import raise_assert_detail
|
|
msg = (f"{obj} values are different "
|
|
f"({np.round(diff * 100.0 / na, 5)} %)")
|
|
raise_assert_detail(obj, msg, lobj, robj, index_values=index_values)
|
|
|
|
return True
|
|
|
|
elif isiterable(b):
|
|
from pandas._testing import assert_class_equal
|
|
|
|
# classes can't be the same, to raise error
|
|
assert_class_equal(a, b, obj=obj)
|
|
|
|
if isna(a) and isna(b):
|
|
# TODO: Should require same-dtype NA?
|
|
# nan / None comparison
|
|
return True
|
|
|
|
if isna(a) and not isna(b) or not isna(a) and isna(b):
|
|
# boolean value of pd.NA is ambigous
|
|
raise AssertionError(f"{a} != {b}")
|
|
|
|
if a == b:
|
|
# object comparison
|
|
return True
|
|
|
|
if is_real_number_object(a) and is_real_number_object(b):
|
|
if array_equivalent(a, b, strict_nan=True):
|
|
# inf comparison
|
|
return True
|
|
|
|
fa, fb = a, b
|
|
|
|
if not math.isclose(fa, fb, rel_tol=rtol, abs_tol=atol):
|
|
assert False, (f"expected {fb:.5f} but got {fa:.5f}, "
|
|
f"with rtol={rtol}, atol={atol}")
|
|
return True
|
|
|
|
if is_complex_object(a) and is_complex_object(b):
|
|
if array_equivalent(a, b, strict_nan=True):
|
|
# inf comparison
|
|
return True
|
|
|
|
if not cmath.isclose(a, b, rel_tol=rtol, abs_tol=atol):
|
|
assert False, (f"expected {b:.5f} but got {a:.5f}, "
|
|
f"with rtol={rtol}, atol={atol}")
|
|
return True
|
|
|
|
raise AssertionError(f"{a} != {b}")
|