776 lines
28 KiB
Python
776 lines
28 KiB
Python
"""Test functions for 1D array set operations.
|
|
|
|
"""
|
|
import numpy as np
|
|
|
|
from numpy.testing import (assert_array_equal, assert_equal,
|
|
assert_raises, assert_raises_regex)
|
|
from numpy.lib.arraysetops import (
|
|
ediff1d, intersect1d, setxor1d, union1d, setdiff1d, unique, in1d, isin
|
|
)
|
|
import pytest
|
|
|
|
|
|
class TestSetOps:
|
|
|
|
def test_intersect1d(self):
|
|
# unique inputs
|
|
a = np.array([5, 7, 1, 2])
|
|
b = np.array([2, 4, 3, 1, 5])
|
|
|
|
ec = np.array([1, 2, 5])
|
|
c = intersect1d(a, b, assume_unique=True)
|
|
assert_array_equal(c, ec)
|
|
|
|
# non-unique inputs
|
|
a = np.array([5, 5, 7, 1, 2])
|
|
b = np.array([2, 1, 4, 3, 3, 1, 5])
|
|
|
|
ed = np.array([1, 2, 5])
|
|
c = intersect1d(a, b)
|
|
assert_array_equal(c, ed)
|
|
assert_array_equal([], intersect1d([], []))
|
|
|
|
def test_intersect1d_array_like(self):
|
|
# See gh-11772
|
|
class Test:
|
|
def __array__(self):
|
|
return np.arange(3)
|
|
|
|
a = Test()
|
|
res = intersect1d(a, a)
|
|
assert_array_equal(res, a)
|
|
res = intersect1d([1, 2, 3], [1, 2, 3])
|
|
assert_array_equal(res, [1, 2, 3])
|
|
|
|
def test_intersect1d_indices(self):
|
|
# unique inputs
|
|
a = np.array([1, 2, 3, 4])
|
|
b = np.array([2, 1, 4, 6])
|
|
c, i1, i2 = intersect1d(a, b, assume_unique=True, return_indices=True)
|
|
ee = np.array([1, 2, 4])
|
|
assert_array_equal(c, ee)
|
|
assert_array_equal(a[i1], ee)
|
|
assert_array_equal(b[i2], ee)
|
|
|
|
# non-unique inputs
|
|
a = np.array([1, 2, 2, 3, 4, 3, 2])
|
|
b = np.array([1, 8, 4, 2, 2, 3, 2, 3])
|
|
c, i1, i2 = intersect1d(a, b, return_indices=True)
|
|
ef = np.array([1, 2, 3, 4])
|
|
assert_array_equal(c, ef)
|
|
assert_array_equal(a[i1], ef)
|
|
assert_array_equal(b[i2], ef)
|
|
|
|
# non1d, unique inputs
|
|
a = np.array([[2, 4, 5, 6], [7, 8, 1, 15]])
|
|
b = np.array([[3, 2, 7, 6], [10, 12, 8, 9]])
|
|
c, i1, i2 = intersect1d(a, b, assume_unique=True, return_indices=True)
|
|
ui1 = np.unravel_index(i1, a.shape)
|
|
ui2 = np.unravel_index(i2, b.shape)
|
|
ea = np.array([2, 6, 7, 8])
|
|
assert_array_equal(ea, a[ui1])
|
|
assert_array_equal(ea, b[ui2])
|
|
|
|
# non1d, not assumed to be uniqueinputs
|
|
a = np.array([[2, 4, 5, 6, 6], [4, 7, 8, 7, 2]])
|
|
b = np.array([[3, 2, 7, 7], [10, 12, 8, 7]])
|
|
c, i1, i2 = intersect1d(a, b, return_indices=True)
|
|
ui1 = np.unravel_index(i1, a.shape)
|
|
ui2 = np.unravel_index(i2, b.shape)
|
|
ea = np.array([2, 7, 8])
|
|
assert_array_equal(ea, a[ui1])
|
|
assert_array_equal(ea, b[ui2])
|
|
|
|
def test_setxor1d(self):
|
|
a = np.array([5, 7, 1, 2])
|
|
b = np.array([2, 4, 3, 1, 5])
|
|
|
|
ec = np.array([3, 4, 7])
|
|
c = setxor1d(a, b)
|
|
assert_array_equal(c, ec)
|
|
|
|
a = np.array([1, 2, 3])
|
|
b = np.array([6, 5, 4])
|
|
|
|
ec = np.array([1, 2, 3, 4, 5, 6])
|
|
c = setxor1d(a, b)
|
|
assert_array_equal(c, ec)
|
|
|
|
a = np.array([1, 8, 2, 3])
|
|
b = np.array([6, 5, 4, 8])
|
|
|
|
ec = np.array([1, 2, 3, 4, 5, 6])
|
|
c = setxor1d(a, b)
|
|
assert_array_equal(c, ec)
|
|
|
|
assert_array_equal([], setxor1d([], []))
|
|
|
|
def test_ediff1d(self):
|
|
zero_elem = np.array([])
|
|
one_elem = np.array([1])
|
|
two_elem = np.array([1, 2])
|
|
|
|
assert_array_equal([], ediff1d(zero_elem))
|
|
assert_array_equal([0], ediff1d(zero_elem, to_begin=0))
|
|
assert_array_equal([0], ediff1d(zero_elem, to_end=0))
|
|
assert_array_equal([-1, 0], ediff1d(zero_elem, to_begin=-1, to_end=0))
|
|
assert_array_equal([], ediff1d(one_elem))
|
|
assert_array_equal([1], ediff1d(two_elem))
|
|
assert_array_equal([7, 1, 9], ediff1d(two_elem, to_begin=7, to_end=9))
|
|
assert_array_equal([5, 6, 1, 7, 8],
|
|
ediff1d(two_elem, to_begin=[5, 6], to_end=[7, 8]))
|
|
assert_array_equal([1, 9], ediff1d(two_elem, to_end=9))
|
|
assert_array_equal([1, 7, 8], ediff1d(two_elem, to_end=[7, 8]))
|
|
assert_array_equal([7, 1], ediff1d(two_elem, to_begin=7))
|
|
assert_array_equal([5, 6, 1], ediff1d(two_elem, to_begin=[5, 6]))
|
|
|
|
@pytest.mark.parametrize("ary, prepend, append, expected", [
|
|
# should fail because trying to cast
|
|
# np.nan standard floating point value
|
|
# into an integer array:
|
|
(np.array([1, 2, 3], dtype=np.int64),
|
|
None,
|
|
np.nan,
|
|
'to_end'),
|
|
# should fail because attempting
|
|
# to downcast to int type:
|
|
(np.array([1, 2, 3], dtype=np.int64),
|
|
np.array([5, 7, 2], dtype=np.float32),
|
|
None,
|
|
'to_begin'),
|
|
# should fail because attempting to cast
|
|
# two special floating point values
|
|
# to integers (on both sides of ary),
|
|
# `to_begin` is in the error message as the impl checks this first:
|
|
(np.array([1., 3., 9.], dtype=np.int8),
|
|
np.nan,
|
|
np.nan,
|
|
'to_begin'),
|
|
])
|
|
def test_ediff1d_forbidden_type_casts(self, ary, prepend, append, expected):
|
|
# verify resolution of gh-11490
|
|
|
|
# specifically, raise an appropriate
|
|
# Exception when attempting to append or
|
|
# prepend with an incompatible type
|
|
msg = 'dtype of `{}` must be compatible'.format(expected)
|
|
with assert_raises_regex(TypeError, msg):
|
|
ediff1d(ary=ary,
|
|
to_end=append,
|
|
to_begin=prepend)
|
|
|
|
@pytest.mark.parametrize(
|
|
"ary,prepend,append,expected",
|
|
[
|
|
(np.array([1, 2, 3], dtype=np.int16),
|
|
2**16, # will be cast to int16 under same kind rule.
|
|
2**16 + 4,
|
|
np.array([0, 1, 1, 4], dtype=np.int16)),
|
|
(np.array([1, 2, 3], dtype=np.float32),
|
|
np.array([5], dtype=np.float64),
|
|
None,
|
|
np.array([5, 1, 1], dtype=np.float32)),
|
|
(np.array([1, 2, 3], dtype=np.int32),
|
|
0,
|
|
0,
|
|
np.array([0, 1, 1, 0], dtype=np.int32)),
|
|
(np.array([1, 2, 3], dtype=np.int64),
|
|
3,
|
|
-9,
|
|
np.array([3, 1, 1, -9], dtype=np.int64)),
|
|
]
|
|
)
|
|
def test_ediff1d_scalar_handling(self,
|
|
ary,
|
|
prepend,
|
|
append,
|
|
expected):
|
|
# maintain backwards-compatibility
|
|
# of scalar prepend / append behavior
|
|
# in ediff1d following fix for gh-11490
|
|
actual = np.ediff1d(ary=ary,
|
|
to_end=append,
|
|
to_begin=prepend)
|
|
assert_equal(actual, expected)
|
|
assert actual.dtype == expected.dtype
|
|
|
|
def test_isin(self):
|
|
# the tests for in1d cover most of isin's behavior
|
|
# if in1d is removed, would need to change those tests to test
|
|
# isin instead.
|
|
def _isin_slow(a, b):
|
|
b = np.asarray(b).flatten().tolist()
|
|
return a in b
|
|
isin_slow = np.vectorize(_isin_slow, otypes=[bool], excluded={1})
|
|
|
|
def assert_isin_equal(a, b):
|
|
x = isin(a, b)
|
|
y = isin_slow(a, b)
|
|
assert_array_equal(x, y)
|
|
|
|
# multidimensional arrays in both arguments
|
|
a = np.arange(24).reshape([2, 3, 4])
|
|
b = np.array([[10, 20, 30], [0, 1, 3], [11, 22, 33]])
|
|
assert_isin_equal(a, b)
|
|
|
|
# array-likes as both arguments
|
|
c = [(9, 8), (7, 6)]
|
|
d = (9, 7)
|
|
assert_isin_equal(c, d)
|
|
|
|
# zero-d array:
|
|
f = np.array(3)
|
|
assert_isin_equal(f, b)
|
|
assert_isin_equal(a, f)
|
|
assert_isin_equal(f, f)
|
|
|
|
# scalar:
|
|
assert_isin_equal(5, b)
|
|
assert_isin_equal(a, 6)
|
|
assert_isin_equal(5, 6)
|
|
|
|
# empty array-like:
|
|
x = []
|
|
assert_isin_equal(x, b)
|
|
assert_isin_equal(a, x)
|
|
assert_isin_equal(x, x)
|
|
|
|
def test_in1d(self):
|
|
# we use two different sizes for the b array here to test the
|
|
# two different paths in in1d().
|
|
for mult in (1, 10):
|
|
# One check without np.array to make sure lists are handled correct
|
|
a = [5, 7, 1, 2]
|
|
b = [2, 4, 3, 1, 5] * mult
|
|
ec = np.array([True, False, True, True])
|
|
c = in1d(a, b, assume_unique=True)
|
|
assert_array_equal(c, ec)
|
|
|
|
a[0] = 8
|
|
ec = np.array([False, False, True, True])
|
|
c = in1d(a, b, assume_unique=True)
|
|
assert_array_equal(c, ec)
|
|
|
|
a[0], a[3] = 4, 8
|
|
ec = np.array([True, False, True, False])
|
|
c = in1d(a, b, assume_unique=True)
|
|
assert_array_equal(c, ec)
|
|
|
|
a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5])
|
|
b = [2, 3, 4] * mult
|
|
ec = [False, True, False, True, True, True, True, True, True,
|
|
False, True, False, False, False]
|
|
c = in1d(a, b)
|
|
assert_array_equal(c, ec)
|
|
|
|
b = b + [5, 5, 4] * mult
|
|
ec = [True, True, True, True, True, True, True, True, True, True,
|
|
True, False, True, True]
|
|
c = in1d(a, b)
|
|
assert_array_equal(c, ec)
|
|
|
|
a = np.array([5, 7, 1, 2])
|
|
b = np.array([2, 4, 3, 1, 5] * mult)
|
|
ec = np.array([True, False, True, True])
|
|
c = in1d(a, b)
|
|
assert_array_equal(c, ec)
|
|
|
|
a = np.array([5, 7, 1, 1, 2])
|
|
b = np.array([2, 4, 3, 3, 1, 5] * mult)
|
|
ec = np.array([True, False, True, True, True])
|
|
c = in1d(a, b)
|
|
assert_array_equal(c, ec)
|
|
|
|
a = np.array([5, 5])
|
|
b = np.array([2, 2] * mult)
|
|
ec = np.array([False, False])
|
|
c = in1d(a, b)
|
|
assert_array_equal(c, ec)
|
|
|
|
a = np.array([5])
|
|
b = np.array([2])
|
|
ec = np.array([False])
|
|
c = in1d(a, b)
|
|
assert_array_equal(c, ec)
|
|
|
|
assert_array_equal(in1d([], []), [])
|
|
|
|
def test_in1d_char_array(self):
|
|
a = np.array(['a', 'b', 'c', 'd', 'e', 'c', 'e', 'b'])
|
|
b = np.array(['a', 'c'])
|
|
|
|
ec = np.array([True, False, True, False, False, True, False, False])
|
|
c = in1d(a, b)
|
|
|
|
assert_array_equal(c, ec)
|
|
|
|
def test_in1d_invert(self):
|
|
"Test in1d's invert parameter"
|
|
# We use two different sizes for the b array here to test the
|
|
# two different paths in in1d().
|
|
for mult in (1, 10):
|
|
a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5])
|
|
b = [2, 3, 4] * mult
|
|
assert_array_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))
|
|
|
|
def test_in1d_ravel(self):
|
|
# Test that in1d ravels its input arrays. This is not documented
|
|
# behavior however. The test is to ensure consistentency.
|
|
a = np.arange(6).reshape(2, 3)
|
|
b = np.arange(3, 9).reshape(3, 2)
|
|
long_b = np.arange(3, 63).reshape(30, 2)
|
|
ec = np.array([False, False, False, True, True, True])
|
|
|
|
assert_array_equal(in1d(a, b, assume_unique=True), ec)
|
|
assert_array_equal(in1d(a, b, assume_unique=False), ec)
|
|
assert_array_equal(in1d(a, long_b, assume_unique=True), ec)
|
|
assert_array_equal(in1d(a, long_b, assume_unique=False), ec)
|
|
|
|
def test_in1d_first_array_is_object(self):
|
|
ar1 = [None]
|
|
ar2 = np.array([1]*10)
|
|
expected = np.array([False])
|
|
result = np.in1d(ar1, ar2)
|
|
assert_array_equal(result, expected)
|
|
|
|
def test_in1d_second_array_is_object(self):
|
|
ar1 = 1
|
|
ar2 = np.array([None]*10)
|
|
expected = np.array([False])
|
|
result = np.in1d(ar1, ar2)
|
|
assert_array_equal(result, expected)
|
|
|
|
def test_in1d_both_arrays_are_object(self):
|
|
ar1 = [None]
|
|
ar2 = np.array([None]*10)
|
|
expected = np.array([True])
|
|
result = np.in1d(ar1, ar2)
|
|
assert_array_equal(result, expected)
|
|
|
|
def test_in1d_both_arrays_have_structured_dtype(self):
|
|
# Test arrays of a structured data type containing an integer field
|
|
# and a field of dtype `object` allowing for arbitrary Python objects
|
|
dt = np.dtype([('field1', int), ('field2', object)])
|
|
ar1 = np.array([(1, None)], dtype=dt)
|
|
ar2 = np.array([(1, None)]*10, dtype=dt)
|
|
expected = np.array([True])
|
|
result = np.in1d(ar1, ar2)
|
|
assert_array_equal(result, expected)
|
|
|
|
def test_in1d_with_arrays_containing_tuples(self):
|
|
ar1 = np.array([(1,), 2], dtype=object)
|
|
ar2 = np.array([(1,), 2], dtype=object)
|
|
expected = np.array([True, True])
|
|
result = np.in1d(ar1, ar2)
|
|
assert_array_equal(result, expected)
|
|
result = np.in1d(ar1, ar2, invert=True)
|
|
assert_array_equal(result, np.invert(expected))
|
|
|
|
# An integer is added at the end of the array to make sure
|
|
# that the array builder will create the array with tuples
|
|
# and after it's created the integer is removed.
|
|
# There's a bug in the array constructor that doesn't handle
|
|
# tuples properly and adding the integer fixes that.
|
|
ar1 = np.array([(1,), (2, 1), 1], dtype=object)
|
|
ar1 = ar1[:-1]
|
|
ar2 = np.array([(1,), (2, 1), 1], dtype=object)
|
|
ar2 = ar2[:-1]
|
|
expected = np.array([True, True])
|
|
result = np.in1d(ar1, ar2)
|
|
assert_array_equal(result, expected)
|
|
result = np.in1d(ar1, ar2, invert=True)
|
|
assert_array_equal(result, np.invert(expected))
|
|
|
|
ar1 = np.array([(1,), (2, 3), 1], dtype=object)
|
|
ar1 = ar1[:-1]
|
|
ar2 = np.array([(1,), 2], dtype=object)
|
|
expected = np.array([True, False])
|
|
result = np.in1d(ar1, ar2)
|
|
assert_array_equal(result, expected)
|
|
result = np.in1d(ar1, ar2, invert=True)
|
|
assert_array_equal(result, np.invert(expected))
|
|
|
|
def test_union1d(self):
|
|
a = np.array([5, 4, 7, 1, 2])
|
|
b = np.array([2, 4, 3, 3, 2, 1, 5])
|
|
|
|
ec = np.array([1, 2, 3, 4, 5, 7])
|
|
c = union1d(a, b)
|
|
assert_array_equal(c, ec)
|
|
|
|
# Tests gh-10340, arguments to union1d should be
|
|
# flattened if they are not already 1D
|
|
x = np.array([[0, 1, 2], [3, 4, 5]])
|
|
y = np.array([0, 1, 2, 3, 4])
|
|
ez = np.array([0, 1, 2, 3, 4, 5])
|
|
z = union1d(x, y)
|
|
assert_array_equal(z, ez)
|
|
|
|
assert_array_equal([], union1d([], []))
|
|
|
|
def test_setdiff1d(self):
|
|
a = np.array([6, 5, 4, 7, 1, 2, 7, 4])
|
|
b = np.array([2, 4, 3, 3, 2, 1, 5])
|
|
|
|
ec = np.array([6, 7])
|
|
c = setdiff1d(a, b)
|
|
assert_array_equal(c, ec)
|
|
|
|
a = np.arange(21)
|
|
b = np.arange(19)
|
|
ec = np.array([19, 20])
|
|
c = setdiff1d(a, b)
|
|
assert_array_equal(c, ec)
|
|
|
|
assert_array_equal([], setdiff1d([], []))
|
|
a = np.array((), np.uint32)
|
|
assert_equal(setdiff1d(a, []).dtype, np.uint32)
|
|
|
|
def test_setdiff1d_unique(self):
|
|
a = np.array([3, 2, 1])
|
|
b = np.array([7, 5, 2])
|
|
expected = np.array([3, 1])
|
|
actual = setdiff1d(a, b, assume_unique=True)
|
|
assert_equal(actual, expected)
|
|
|
|
def test_setdiff1d_char_array(self):
|
|
a = np.array(['a', 'b', 'c'])
|
|
b = np.array(['a', 'b', 's'])
|
|
assert_array_equal(setdiff1d(a, b), np.array(['c']))
|
|
|
|
def test_manyways(self):
|
|
a = np.array([5, 7, 1, 2, 8])
|
|
b = np.array([9, 8, 2, 4, 3, 1, 5])
|
|
|
|
c1 = setxor1d(a, b)
|
|
aux1 = intersect1d(a, b)
|
|
aux2 = union1d(a, b)
|
|
c2 = setdiff1d(aux2, aux1)
|
|
assert_array_equal(c1, c2)
|
|
|
|
|
|
class TestUnique:
|
|
|
|
def test_unique_1d(self):
|
|
|
|
def check_all(a, b, i1, i2, c, dt):
|
|
base_msg = 'check {0} failed for type {1}'
|
|
|
|
msg = base_msg.format('values', dt)
|
|
v = unique(a)
|
|
assert_array_equal(v, b, msg)
|
|
|
|
msg = base_msg.format('return_index', dt)
|
|
v, j = unique(a, True, False, False)
|
|
assert_array_equal(v, b, msg)
|
|
assert_array_equal(j, i1, msg)
|
|
|
|
msg = base_msg.format('return_inverse', dt)
|
|
v, j = unique(a, False, True, False)
|
|
assert_array_equal(v, b, msg)
|
|
assert_array_equal(j, i2, msg)
|
|
|
|
msg = base_msg.format('return_counts', dt)
|
|
v, j = unique(a, False, False, True)
|
|
assert_array_equal(v, b, msg)
|
|
assert_array_equal(j, c, msg)
|
|
|
|
msg = base_msg.format('return_index and return_inverse', dt)
|
|
v, j1, j2 = unique(a, True, True, False)
|
|
assert_array_equal(v, b, msg)
|
|
assert_array_equal(j1, i1, msg)
|
|
assert_array_equal(j2, i2, msg)
|
|
|
|
msg = base_msg.format('return_index and return_counts', dt)
|
|
v, j1, j2 = unique(a, True, False, True)
|
|
assert_array_equal(v, b, msg)
|
|
assert_array_equal(j1, i1, msg)
|
|
assert_array_equal(j2, c, msg)
|
|
|
|
msg = base_msg.format('return_inverse and return_counts', dt)
|
|
v, j1, j2 = unique(a, False, True, True)
|
|
assert_array_equal(v, b, msg)
|
|
assert_array_equal(j1, i2, msg)
|
|
assert_array_equal(j2, c, msg)
|
|
|
|
msg = base_msg.format(('return_index, return_inverse '
|
|
'and return_counts'), dt)
|
|
v, j1, j2, j3 = unique(a, True, True, True)
|
|
assert_array_equal(v, b, msg)
|
|
assert_array_equal(j1, i1, msg)
|
|
assert_array_equal(j2, i2, msg)
|
|
assert_array_equal(j3, c, msg)
|
|
|
|
a = [5, 7, 1, 2, 1, 5, 7]*10
|
|
b = [1, 2, 5, 7]
|
|
i1 = [2, 3, 0, 1]
|
|
i2 = [2, 3, 0, 1, 0, 2, 3]*10
|
|
c = np.multiply([2, 1, 2, 2], 10)
|
|
|
|
# test for numeric arrays
|
|
types = []
|
|
types.extend(np.typecodes['AllInteger'])
|
|
types.extend(np.typecodes['AllFloat'])
|
|
types.append('datetime64[D]')
|
|
types.append('timedelta64[D]')
|
|
for dt in types:
|
|
aa = np.array(a, dt)
|
|
bb = np.array(b, dt)
|
|
check_all(aa, bb, i1, i2, c, dt)
|
|
|
|
# test for object arrays
|
|
dt = 'O'
|
|
aa = np.empty(len(a), dt)
|
|
aa[:] = a
|
|
bb = np.empty(len(b), dt)
|
|
bb[:] = b
|
|
check_all(aa, bb, i1, i2, c, dt)
|
|
|
|
# test for structured arrays
|
|
dt = [('', 'i'), ('', 'i')]
|
|
aa = np.array(list(zip(a, a)), dt)
|
|
bb = np.array(list(zip(b, b)), dt)
|
|
check_all(aa, bb, i1, i2, c, dt)
|
|
|
|
# test for ticket #2799
|
|
aa = [1. + 0.j, 1 - 1.j, 1]
|
|
assert_array_equal(np.unique(aa), [1. - 1.j, 1. + 0.j])
|
|
|
|
# test for ticket #4785
|
|
a = [(1, 2), (1, 2), (2, 3)]
|
|
unq = [1, 2, 3]
|
|
inv = [0, 1, 0, 1, 1, 2]
|
|
a1 = unique(a)
|
|
assert_array_equal(a1, unq)
|
|
a2, a2_inv = unique(a, return_inverse=True)
|
|
assert_array_equal(a2, unq)
|
|
assert_array_equal(a2_inv, inv)
|
|
|
|
# test for chararrays with return_inverse (gh-5099)
|
|
a = np.chararray(5)
|
|
a[...] = ''
|
|
a2, a2_inv = np.unique(a, return_inverse=True)
|
|
assert_array_equal(a2_inv, np.zeros(5))
|
|
|
|
# test for ticket #9137
|
|
a = []
|
|
a1_idx = np.unique(a, return_index=True)[1]
|
|
a2_inv = np.unique(a, return_inverse=True)[1]
|
|
a3_idx, a3_inv = np.unique(a, return_index=True,
|
|
return_inverse=True)[1:]
|
|
assert_equal(a1_idx.dtype, np.intp)
|
|
assert_equal(a2_inv.dtype, np.intp)
|
|
assert_equal(a3_idx.dtype, np.intp)
|
|
assert_equal(a3_inv.dtype, np.intp)
|
|
|
|
# test for ticket 2111 - float
|
|
a = [2.0, np.nan, 1.0, np.nan]
|
|
ua = [1.0, 2.0, np.nan]
|
|
ua_idx = [2, 0, 1]
|
|
ua_inv = [1, 2, 0, 2]
|
|
ua_cnt = [1, 1, 2]
|
|
assert_equal(np.unique(a), ua)
|
|
assert_equal(np.unique(a, return_index=True), (ua, ua_idx))
|
|
assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv))
|
|
assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt))
|
|
|
|
# test for ticket 2111 - complex
|
|
a = [2.0-1j, np.nan, 1.0+1j, complex(0.0, np.nan), complex(1.0, np.nan)]
|
|
ua = [1.0+1j, 2.0-1j, complex(0.0, np.nan)]
|
|
ua_idx = [2, 0, 3]
|
|
ua_inv = [1, 2, 0, 2, 2]
|
|
ua_cnt = [1, 1, 3]
|
|
assert_equal(np.unique(a), ua)
|
|
assert_equal(np.unique(a, return_index=True), (ua, ua_idx))
|
|
assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv))
|
|
assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt))
|
|
|
|
# test for ticket 2111 - datetime64
|
|
nat = np.datetime64('nat')
|
|
a = [np.datetime64('2020-12-26'), nat, np.datetime64('2020-12-24'), nat]
|
|
ua = [np.datetime64('2020-12-24'), np.datetime64('2020-12-26'), nat]
|
|
ua_idx = [2, 0, 1]
|
|
ua_inv = [1, 2, 0, 2]
|
|
ua_cnt = [1, 1, 2]
|
|
assert_equal(np.unique(a), ua)
|
|
assert_equal(np.unique(a, return_index=True), (ua, ua_idx))
|
|
assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv))
|
|
assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt))
|
|
|
|
# test for ticket 2111 - timedelta
|
|
nat = np.timedelta64('nat')
|
|
a = [np.timedelta64(1, 'D'), nat, np.timedelta64(1, 'h'), nat]
|
|
ua = [np.timedelta64(1, 'h'), np.timedelta64(1, 'D'), nat]
|
|
ua_idx = [2, 0, 1]
|
|
ua_inv = [1, 2, 0, 2]
|
|
ua_cnt = [1, 1, 2]
|
|
assert_equal(np.unique(a), ua)
|
|
assert_equal(np.unique(a, return_index=True), (ua, ua_idx))
|
|
assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv))
|
|
assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt))
|
|
|
|
# test for gh-19300
|
|
all_nans = [np.nan] * 4
|
|
ua = [np.nan]
|
|
ua_idx = [0]
|
|
ua_inv = [0, 0, 0, 0]
|
|
ua_cnt = [4]
|
|
assert_equal(np.unique(all_nans), ua)
|
|
assert_equal(np.unique(all_nans, return_index=True), (ua, ua_idx))
|
|
assert_equal(np.unique(all_nans, return_inverse=True), (ua, ua_inv))
|
|
assert_equal(np.unique(all_nans, return_counts=True), (ua, ua_cnt))
|
|
|
|
def test_unique_axis_errors(self):
|
|
assert_raises(TypeError, self._run_axis_tests, object)
|
|
assert_raises(TypeError, self._run_axis_tests,
|
|
[('a', int), ('b', object)])
|
|
|
|
assert_raises(np.AxisError, unique, np.arange(10), axis=2)
|
|
assert_raises(np.AxisError, unique, np.arange(10), axis=-2)
|
|
|
|
def test_unique_axis_list(self):
|
|
msg = "Unique failed on list of lists"
|
|
inp = [[0, 1, 0], [0, 1, 0]]
|
|
inp_arr = np.asarray(inp)
|
|
assert_array_equal(unique(inp, axis=0), unique(inp_arr, axis=0), msg)
|
|
assert_array_equal(unique(inp, axis=1), unique(inp_arr, axis=1), msg)
|
|
|
|
def test_unique_axis(self):
|
|
types = []
|
|
types.extend(np.typecodes['AllInteger'])
|
|
types.extend(np.typecodes['AllFloat'])
|
|
types.append('datetime64[D]')
|
|
types.append('timedelta64[D]')
|
|
types.append([('a', int), ('b', int)])
|
|
types.append([('a', int), ('b', float)])
|
|
|
|
for dtype in types:
|
|
self._run_axis_tests(dtype)
|
|
|
|
msg = 'Non-bitwise-equal booleans test failed'
|
|
data = np.arange(10, dtype=np.uint8).reshape(-1, 2).view(bool)
|
|
result = np.array([[False, True], [True, True]], dtype=bool)
|
|
assert_array_equal(unique(data, axis=0), result, msg)
|
|
|
|
msg = 'Negative zero equality test failed'
|
|
data = np.array([[-0.0, 0.0], [0.0, -0.0], [-0.0, 0.0], [0.0, -0.0]])
|
|
result = np.array([[-0.0, 0.0]])
|
|
assert_array_equal(unique(data, axis=0), result, msg)
|
|
|
|
@pytest.mark.parametrize("axis", [0, -1])
|
|
def test_unique_1d_with_axis(self, axis):
|
|
x = np.array([4, 3, 2, 3, 2, 1, 2, 2])
|
|
uniq = unique(x, axis=axis)
|
|
assert_array_equal(uniq, [1, 2, 3, 4])
|
|
|
|
def test_unique_axis_zeros(self):
|
|
# issue 15559
|
|
single_zero = np.empty(shape=(2, 0), dtype=np.int8)
|
|
uniq, idx, inv, cnt = unique(single_zero, axis=0, return_index=True,
|
|
return_inverse=True, return_counts=True)
|
|
|
|
# there's 1 element of shape (0,) along axis 0
|
|
assert_equal(uniq.dtype, single_zero.dtype)
|
|
assert_array_equal(uniq, np.empty(shape=(1, 0)))
|
|
assert_array_equal(idx, np.array([0]))
|
|
assert_array_equal(inv, np.array([0, 0]))
|
|
assert_array_equal(cnt, np.array([2]))
|
|
|
|
# there's 0 elements of shape (2,) along axis 1
|
|
uniq, idx, inv, cnt = unique(single_zero, axis=1, return_index=True,
|
|
return_inverse=True, return_counts=True)
|
|
|
|
assert_equal(uniq.dtype, single_zero.dtype)
|
|
assert_array_equal(uniq, np.empty(shape=(2, 0)))
|
|
assert_array_equal(idx, np.array([]))
|
|
assert_array_equal(inv, np.array([]))
|
|
assert_array_equal(cnt, np.array([]))
|
|
|
|
# test a "complicated" shape
|
|
shape = (0, 2, 0, 3, 0, 4, 0)
|
|
multiple_zeros = np.empty(shape=shape)
|
|
for axis in range(len(shape)):
|
|
expected_shape = list(shape)
|
|
if shape[axis] == 0:
|
|
expected_shape[axis] = 0
|
|
else:
|
|
expected_shape[axis] = 1
|
|
|
|
assert_array_equal(unique(multiple_zeros, axis=axis),
|
|
np.empty(shape=expected_shape))
|
|
|
|
def test_unique_masked(self):
|
|
# issue 8664
|
|
x = np.array([64, 0, 1, 2, 3, 63, 63, 0, 0, 0, 1, 2, 0, 63, 0],
|
|
dtype='uint8')
|
|
y = np.ma.masked_equal(x, 0)
|
|
|
|
v = np.unique(y)
|
|
v2, i, c = np.unique(y, return_index=True, return_counts=True)
|
|
|
|
msg = 'Unique returned different results when asked for index'
|
|
assert_array_equal(v.data, v2.data, msg)
|
|
assert_array_equal(v.mask, v2.mask, msg)
|
|
|
|
def test_unique_sort_order_with_axis(self):
|
|
# These tests fail if sorting along axis is done by treating subarrays
|
|
# as unsigned byte strings. See gh-10495.
|
|
fmt = "sort order incorrect for integer type '%s'"
|
|
for dt in 'bhilq':
|
|
a = np.array([[-1], [0]], dt)
|
|
b = np.unique(a, axis=0)
|
|
assert_array_equal(a, b, fmt % dt)
|
|
|
|
def _run_axis_tests(self, dtype):
|
|
data = np.array([[0, 1, 0, 0],
|
|
[1, 0, 0, 0],
|
|
[0, 1, 0, 0],
|
|
[1, 0, 0, 0]]).astype(dtype)
|
|
|
|
msg = 'Unique with 1d array and axis=0 failed'
|
|
result = np.array([0, 1])
|
|
assert_array_equal(unique(data), result.astype(dtype), msg)
|
|
|
|
msg = 'Unique with 2d array and axis=0 failed'
|
|
result = np.array([[0, 1, 0, 0], [1, 0, 0, 0]])
|
|
assert_array_equal(unique(data, axis=0), result.astype(dtype), msg)
|
|
|
|
msg = 'Unique with 2d array and axis=1 failed'
|
|
result = np.array([[0, 0, 1], [0, 1, 0], [0, 0, 1], [0, 1, 0]])
|
|
assert_array_equal(unique(data, axis=1), result.astype(dtype), msg)
|
|
|
|
msg = 'Unique with 3d array and axis=2 failed'
|
|
data3d = np.array([[[1, 1],
|
|
[1, 0]],
|
|
[[0, 1],
|
|
[0, 0]]]).astype(dtype)
|
|
result = np.take(data3d, [1, 0], axis=2)
|
|
assert_array_equal(unique(data3d, axis=2), result, msg)
|
|
|
|
uniq, idx, inv, cnt = unique(data, axis=0, return_index=True,
|
|
return_inverse=True, return_counts=True)
|
|
msg = "Unique's return_index=True failed with axis=0"
|
|
assert_array_equal(data[idx], uniq, msg)
|
|
msg = "Unique's return_inverse=True failed with axis=0"
|
|
assert_array_equal(uniq[inv], data)
|
|
msg = "Unique's return_counts=True failed with axis=0"
|
|
assert_array_equal(cnt, np.array([2, 2]), msg)
|
|
|
|
uniq, idx, inv, cnt = unique(data, axis=1, return_index=True,
|
|
return_inverse=True, return_counts=True)
|
|
msg = "Unique's return_index=True failed with axis=1"
|
|
assert_array_equal(data[:, idx], uniq)
|
|
msg = "Unique's return_inverse=True failed with axis=1"
|
|
assert_array_equal(uniq[:, inv], data)
|
|
msg = "Unique's return_counts=True failed with axis=1"
|
|
assert_array_equal(cnt, np.array([2, 1, 1]), msg)
|
|
|
|
def test_unique_nanequals(self):
|
|
# issue 20326
|
|
a = np.array([1, 1, np.nan, np.nan, np.nan])
|
|
unq = np.unique(a)
|
|
not_unq = np.unique(a, equal_nan=False)
|
|
assert_array_equal(unq, np.array([1, np.nan]))
|
|
assert_array_equal(not_unq, np.array([1, np.nan, np.nan, np.nan]))
|