1882 lines
47 KiB
Python
1882 lines
47 KiB
Python
"""
|
|
This file is very long and growing, but it was decided to not split it yet, as
|
|
it's still manageable (2020-03-17, ~1.1k LoC). See gh-31989
|
|
|
|
Instead of splitting it was decided to define sections here:
|
|
- Configuration / Settings
|
|
- Autouse fixtures
|
|
- Common arguments
|
|
- Missing values & co.
|
|
- Classes
|
|
- Indices
|
|
- Series'
|
|
- DataFrames
|
|
- Operators & Operations
|
|
- Data sets/files
|
|
- Time zones
|
|
- Dtypes
|
|
- Misc
|
|
"""
|
|
|
|
from collections import abc
|
|
from datetime import (
|
|
date,
|
|
datetime,
|
|
time,
|
|
timedelta,
|
|
timezone,
|
|
)
|
|
from decimal import Decimal
|
|
import operator
|
|
import os
|
|
from typing import Callable
|
|
|
|
from dateutil.tz import (
|
|
tzlocal,
|
|
tzutc,
|
|
)
|
|
import hypothesis
|
|
from hypothesis import strategies as st
|
|
import numpy as np
|
|
import pytest
|
|
from pytz import (
|
|
FixedOffset,
|
|
utc,
|
|
)
|
|
|
|
import pandas.util._test_decorators as td
|
|
|
|
from pandas.core.dtypes.dtypes import (
|
|
DatetimeTZDtype,
|
|
IntervalDtype,
|
|
)
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
DataFrame,
|
|
Interval,
|
|
Period,
|
|
Series,
|
|
Timedelta,
|
|
Timestamp,
|
|
)
|
|
import pandas._testing as tm
|
|
from pandas.core import ops
|
|
from pandas.core.indexes.api import (
|
|
Index,
|
|
MultiIndex,
|
|
)
|
|
|
|
try:
|
|
import pyarrow as pa
|
|
except ImportError:
|
|
has_pyarrow = False
|
|
else:
|
|
del pa
|
|
has_pyarrow = True
|
|
|
|
zoneinfo = None
|
|
if pd.compat.PY39:
|
|
# Import "zoneinfo" could not be resolved (reportMissingImports)
|
|
import zoneinfo # type: ignore[no-redef]
|
|
|
|
# Although zoneinfo can be imported in Py39, it is effectively
|
|
# "not available" without tzdata/IANA tz data.
|
|
# We will set zoneinfo to not found in this case
|
|
try:
|
|
zoneinfo.ZoneInfo("UTC") # type: ignore[attr-defined]
|
|
except zoneinfo.ZoneInfoNotFoundError: # type: ignore[attr-defined]
|
|
zoneinfo = None
|
|
|
|
# Until https://github.com/numpy/numpy/issues/19078 is sorted out, just suppress
|
|
suppress_npdev_promotion_warning = pytest.mark.filterwarnings(
|
|
"ignore:Promotion of numbers and bools:FutureWarning"
|
|
)
|
|
|
|
# ----------------------------------------------------------------
|
|
# Configuration / Settings
|
|
# ----------------------------------------------------------------
|
|
# pytest
|
|
|
|
|
|
def pytest_addoption(parser) -> None:
|
|
parser.addoption("--skip-slow", action="store_true", help="skip slow tests")
|
|
parser.addoption("--skip-network", action="store_true", help="skip network tests")
|
|
parser.addoption("--skip-db", action="store_true", help="skip db tests")
|
|
parser.addoption(
|
|
"--run-high-memory", action="store_true", help="run high memory tests"
|
|
)
|
|
parser.addoption("--only-slow", action="store_true", help="run only slow tests")
|
|
parser.addoption(
|
|
"--strict-data-files",
|
|
action="store_true",
|
|
help="Fail if a test is skipped for missing data file.",
|
|
)
|
|
|
|
|
|
def ignore_doctest_warning(item: pytest.Item, path: str, message: str) -> None:
|
|
"""Ignore doctest warning.
|
|
|
|
Parameters
|
|
----------
|
|
item : pytest.Item
|
|
pytest test item.
|
|
path : str
|
|
Module path to Python object, e.g. "pandas.core.frame.DataFrame.append". A
|
|
warning will be filtered when item.name ends with in given path. So it is
|
|
sufficient to specify e.g. "DataFrame.append".
|
|
message : str
|
|
Message to be filtered.
|
|
"""
|
|
if item.name.endswith(path):
|
|
item.add_marker(pytest.mark.filterwarnings(f"ignore:{message}"))
|
|
|
|
|
|
def pytest_collection_modifyitems(items, config):
|
|
skip_slow = config.getoption("--skip-slow")
|
|
only_slow = config.getoption("--only-slow")
|
|
skip_network = config.getoption("--skip-network")
|
|
skip_db = config.getoption("--skip-db")
|
|
|
|
marks = [
|
|
(pytest.mark.slow, "slow", skip_slow, "--skip-slow"),
|
|
(pytest.mark.network, "network", skip_network, "--network"),
|
|
(pytest.mark.db, "db", skip_db, "--skip-db"),
|
|
]
|
|
|
|
# Warnings from doctests that can be ignored; place reason in comment above.
|
|
# Each entry specifies (path, message) - see the ignore_doctest_warning function
|
|
ignored_doctest_warnings = [
|
|
# Deprecations where the docstring will emit a warning
|
|
("DataFrame.append", "The frame.append method is deprecated"),
|
|
("Series.append", "The series.append method is deprecated"),
|
|
("dtypes.common.is_categorical", "is_categorical is deprecated"),
|
|
("Categorical.replace", "Categorical.replace is deprecated"),
|
|
("dtypes.common.is_extension_type", "'is_extension_type' is deprecated"),
|
|
("Index.is_mixed", "Index.is_mixed is deprecated"),
|
|
("MultiIndex._is_lexsorted", "MultiIndex.is_lexsorted is deprecated"),
|
|
# Docstring divides by zero to show behavior difference
|
|
("missing.mask_zero_div_zero", "divide by zero encountered"),
|
|
# Docstring demonstrates the call raises a warning
|
|
("_validators.validate_axis_style_args", "Use named arguments"),
|
|
]
|
|
|
|
for item in items:
|
|
if config.getoption("--doctest-modules") or config.getoption(
|
|
"--doctest-cython", default=False
|
|
):
|
|
# autouse=True for the add_doctest_imports can lead to expensive teardowns
|
|
# since doctest_namespace is a session fixture
|
|
item.add_marker(pytest.mark.usefixtures("add_doctest_imports"))
|
|
|
|
for path, message in ignored_doctest_warnings:
|
|
ignore_doctest_warning(item, path, message)
|
|
|
|
# mark all tests in the pandas/tests/frame directory with "arraymanager"
|
|
if "/frame/" in item.nodeid:
|
|
item.add_marker(pytest.mark.arraymanager)
|
|
item.add_marker(suppress_npdev_promotion_warning)
|
|
|
|
for (mark, kwd, skip_if_found, arg_name) in marks:
|
|
if kwd in item.keywords:
|
|
# If we're skipping, no need to actually add the marker or look for
|
|
# other markers
|
|
if skip_if_found:
|
|
item.add_marker(pytest.mark.skip(f"skipping due to {arg_name}"))
|
|
break
|
|
|
|
item.add_marker(mark)
|
|
|
|
if only_slow and "slow" not in item.keywords:
|
|
item.add_marker(pytest.mark.skip("skipping due to --only-slow"))
|
|
|
|
|
|
# Hypothesis
|
|
hypothesis.settings.register_profile(
|
|
"ci",
|
|
# Hypothesis timing checks are tuned for scalars by default, so we bump
|
|
# them from 200ms to 500ms per test case as the global default. If this
|
|
# is too short for a specific test, (a) try to make it faster, and (b)
|
|
# if it really is slow add `@settings(deadline=...)` with a working value,
|
|
# or `deadline=None` to entirely disable timeouts for that test.
|
|
# 2022-02-09: Changed deadline from 500 -> None. Deadline leads to
|
|
# non-actionable, flaky CI failures (# GH 24641, 44969, 45118, 44969)
|
|
deadline=None,
|
|
suppress_health_check=(hypothesis.HealthCheck.too_slow,),
|
|
)
|
|
hypothesis.settings.load_profile("ci")
|
|
|
|
# Registering these strategies makes them globally available via st.from_type,
|
|
# which is use for offsets in tests/tseries/offsets/test_offsets_properties.py
|
|
for name in "MonthBegin MonthEnd BMonthBegin BMonthEnd".split():
|
|
cls = getattr(pd.tseries.offsets, name)
|
|
st.register_type_strategy(
|
|
cls, st.builds(cls, n=st.integers(-99, 99), normalize=st.booleans())
|
|
)
|
|
|
|
for name in "YearBegin YearEnd BYearBegin BYearEnd".split():
|
|
cls = getattr(pd.tseries.offsets, name)
|
|
st.register_type_strategy(
|
|
cls,
|
|
st.builds(
|
|
cls,
|
|
n=st.integers(-5, 5),
|
|
normalize=st.booleans(),
|
|
month=st.integers(min_value=1, max_value=12),
|
|
),
|
|
)
|
|
|
|
for name in "QuarterBegin QuarterEnd BQuarterBegin BQuarterEnd".split():
|
|
cls = getattr(pd.tseries.offsets, name)
|
|
st.register_type_strategy(
|
|
cls,
|
|
st.builds(
|
|
cls,
|
|
n=st.integers(-24, 24),
|
|
normalize=st.booleans(),
|
|
startingMonth=st.integers(min_value=1, max_value=12),
|
|
),
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def add_doctest_imports(doctest_namespace) -> None:
|
|
"""
|
|
Make `np` and `pd` names available for doctests.
|
|
"""
|
|
doctest_namespace["np"] = np
|
|
doctest_namespace["pd"] = pd
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# Autouse fixtures
|
|
# ----------------------------------------------------------------
|
|
@pytest.fixture(autouse=True)
|
|
def configure_tests() -> None:
|
|
"""
|
|
Configure settings for all tests and test modules.
|
|
"""
|
|
pd.set_option("chained_assignment", "raise")
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# Common arguments
|
|
# ----------------------------------------------------------------
|
|
@pytest.fixture(params=[0, 1, "index", "columns"], ids=lambda x: f"axis={repr(x)}")
|
|
def axis(request):
|
|
"""
|
|
Fixture for returning the axis numbers of a DataFrame.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
axis_frame = axis
|
|
|
|
|
|
@pytest.fixture(params=[1, "columns"], ids=lambda x: f"axis={repr(x)}")
|
|
def axis_1(request):
|
|
"""
|
|
Fixture for returning aliases of axis 1 of a DataFrame.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=[True, False, None])
|
|
def observed(request):
|
|
"""
|
|
Pass in the observed keyword to groupby for [True, False]
|
|
This indicates whether categoricals should return values for
|
|
values which are not in the grouper [False / None], or only values which
|
|
appear in the grouper [True]. [None] is supported for future compatibility
|
|
if we decide to change the default (and would need to warn if this
|
|
parameter is not passed).
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=[True, False, None])
|
|
def ordered(request):
|
|
"""
|
|
Boolean 'ordered' parameter for Categorical.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=["first", "last", False])
|
|
def keep(request):
|
|
"""
|
|
Valid values for the 'keep' parameter used in
|
|
.duplicated or .drop_duplicates
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=["both", "neither", "left", "right"])
|
|
def inclusive_endpoints_fixture(request):
|
|
"""
|
|
Fixture for trying all interval 'inclusive' parameters.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=["left", "right", "both", "neither"])
|
|
def closed(request):
|
|
"""
|
|
Fixture for trying all interval closed parameters.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=["left", "right", "both", "neither"])
|
|
def other_closed(request):
|
|
"""
|
|
Secondary closed fixture to allow parametrizing over all pairs of closed.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
None,
|
|
"gzip",
|
|
"bz2",
|
|
"zip",
|
|
"xz",
|
|
"tar",
|
|
pytest.param("zstd", marks=td.skip_if_no("zstandard")),
|
|
]
|
|
)
|
|
def compression(request):
|
|
"""
|
|
Fixture for trying common compression types in compression tests.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
"gzip",
|
|
"bz2",
|
|
"zip",
|
|
"xz",
|
|
"tar",
|
|
pytest.param("zstd", marks=td.skip_if_no("zstandard")),
|
|
]
|
|
)
|
|
def compression_only(request):
|
|
"""
|
|
Fixture for trying common compression types in compression tests excluding
|
|
uncompressed case.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=[True, False])
|
|
def writable(request):
|
|
"""
|
|
Fixture that an array is writable.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=["inner", "outer", "left", "right"])
|
|
def join_type(request):
|
|
"""
|
|
Fixture for trying all types of join operations.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=["nlargest", "nsmallest"])
|
|
def nselect_method(request):
|
|
"""
|
|
Fixture for trying all nselect methods.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# Missing values & co.
|
|
# ----------------------------------------------------------------
|
|
@pytest.fixture(params=tm.NULL_OBJECTS, ids=lambda x: type(x).__name__)
|
|
def nulls_fixture(request):
|
|
"""
|
|
Fixture for each null type in pandas.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
nulls_fixture2 = nulls_fixture # Generate cartesian product of nulls_fixture
|
|
|
|
|
|
@pytest.fixture(params=[None, np.nan, pd.NaT])
|
|
def unique_nulls_fixture(request):
|
|
"""
|
|
Fixture for each null type in pandas, each null type exactly once.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
# Generate cartesian product of unique_nulls_fixture:
|
|
unique_nulls_fixture2 = unique_nulls_fixture
|
|
|
|
|
|
@pytest.fixture(params=tm.NP_NAT_OBJECTS, ids=lambda x: type(x).__name__)
|
|
def np_nat_fixture(request):
|
|
"""
|
|
Fixture for each NaT type in numpy.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
# Generate cartesian product of np_nat_fixture:
|
|
np_nat_fixture2 = np_nat_fixture
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# Classes
|
|
# ----------------------------------------------------------------
|
|
|
|
|
|
@pytest.fixture(params=[DataFrame, Series])
|
|
def frame_or_series(request):
|
|
"""
|
|
Fixture to parametrize over DataFrame and Series.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
# error: List item 0 has incompatible type "Type[Index]"; expected "Type[IndexOpsMixin]"
|
|
@pytest.fixture(
|
|
params=[Index, Series], ids=["index", "series"] # type: ignore[list-item]
|
|
)
|
|
def index_or_series(request):
|
|
"""
|
|
Fixture to parametrize over Index and Series, made necessary by a mypy
|
|
bug, giving an error:
|
|
|
|
List item 0 has incompatible type "Type[Series]"; expected "Type[PandasObject]"
|
|
|
|
See GH#29725
|
|
"""
|
|
return request.param
|
|
|
|
|
|
# Generate cartesian product of index_or_series fixture:
|
|
index_or_series2 = index_or_series
|
|
|
|
|
|
@pytest.fixture(params=[Index, Series, pd.array], ids=["index", "series", "array"])
|
|
def index_or_series_or_array(request):
|
|
"""
|
|
Fixture to parametrize over Index, Series, and ExtensionArray
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=[Index, Series, DataFrame, pd.array], ids=lambda x: x.__name__)
|
|
def box_with_array(request):
|
|
"""
|
|
Fixture to test behavior for Index, Series, DataFrame, and pandas Array
|
|
classes
|
|
"""
|
|
return request.param
|
|
|
|
|
|
box_with_array2 = box_with_array
|
|
|
|
|
|
@pytest.fixture
|
|
def dict_subclass():
|
|
"""
|
|
Fixture for a dictionary subclass.
|
|
"""
|
|
|
|
class TestSubDict(dict):
|
|
def __init__(self, *args, **kwargs) -> None:
|
|
dict.__init__(self, *args, **kwargs)
|
|
|
|
return TestSubDict
|
|
|
|
|
|
@pytest.fixture
|
|
def non_dict_mapping_subclass():
|
|
"""
|
|
Fixture for a non-mapping dictionary subclass.
|
|
"""
|
|
|
|
class TestNonDictMapping(abc.Mapping):
|
|
def __init__(self, underlying_dict) -> None:
|
|
self._data = underlying_dict
|
|
|
|
def __getitem__(self, key):
|
|
return self._data.__getitem__(key)
|
|
|
|
def __iter__(self):
|
|
return self._data.__iter__()
|
|
|
|
def __len__(self):
|
|
return self._data.__len__()
|
|
|
|
return TestNonDictMapping
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# Indices
|
|
# ----------------------------------------------------------------
|
|
@pytest.fixture
|
|
def multiindex_year_month_day_dataframe_random_data():
|
|
"""
|
|
DataFrame with 3 level MultiIndex (year, month, day) covering
|
|
first 100 business days from 2000-01-01 with random data
|
|
"""
|
|
tdf = tm.makeTimeDataFrame(100)
|
|
ymd = tdf.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]).sum()
|
|
# use Int64Index, to make sure things work
|
|
ymd.index = ymd.index.set_levels([lev.astype("i8") for lev in ymd.index.levels])
|
|
ymd.index.set_names(["year", "month", "day"], inplace=True)
|
|
return ymd
|
|
|
|
|
|
@pytest.fixture
|
|
def lexsorted_two_level_string_multiindex() -> MultiIndex:
|
|
"""
|
|
2-level MultiIndex, lexsorted, with string names.
|
|
"""
|
|
return MultiIndex(
|
|
levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]],
|
|
codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
|
|
names=["first", "second"],
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def multiindex_dataframe_random_data(
|
|
lexsorted_two_level_string_multiindex,
|
|
) -> DataFrame:
|
|
"""DataFrame with 2 level MultiIndex with random data"""
|
|
index = lexsorted_two_level_string_multiindex
|
|
return DataFrame(
|
|
np.random.randn(10, 3), index=index, columns=Index(["A", "B", "C"], name="exp")
|
|
)
|
|
|
|
|
|
def _create_multiindex():
|
|
"""
|
|
MultiIndex used to test the general functionality of this object
|
|
"""
|
|
|
|
# See Also: tests.multi.conftest.idx
|
|
major_axis = Index(["foo", "bar", "baz", "qux"])
|
|
minor_axis = Index(["one", "two"])
|
|
|
|
major_codes = np.array([0, 0, 1, 2, 3, 3])
|
|
minor_codes = np.array([0, 1, 0, 1, 0, 1])
|
|
index_names = ["first", "second"]
|
|
return MultiIndex(
|
|
levels=[major_axis, minor_axis],
|
|
codes=[major_codes, minor_codes],
|
|
names=index_names,
|
|
verify_integrity=False,
|
|
)
|
|
|
|
|
|
def _create_mi_with_dt64tz_level():
|
|
"""
|
|
MultiIndex with a level that is a tzaware DatetimeIndex.
|
|
"""
|
|
# GH#8367 round trip with pickle
|
|
return MultiIndex.from_product(
|
|
[[1, 2], ["a", "b"], pd.date_range("20130101", periods=3, tz="US/Eastern")],
|
|
names=["one", "two", "three"],
|
|
)
|
|
|
|
|
|
indices_dict = {
|
|
"string": tm.makeStringIndex(100),
|
|
"datetime": tm.makeDateIndex(100),
|
|
"datetime-tz": tm.makeDateIndex(100, tz="US/Pacific"),
|
|
"period": tm.makePeriodIndex(100),
|
|
"timedelta": tm.makeTimedeltaIndex(100),
|
|
"int": tm.makeIntIndex(100),
|
|
"uint": tm.makeUIntIndex(100),
|
|
"range": tm.makeRangeIndex(100),
|
|
"float": tm.makeFloatIndex(100),
|
|
"complex64": tm.makeFloatIndex(100).astype("complex64"),
|
|
"complex128": tm.makeFloatIndex(100).astype("complex128"),
|
|
"num_int64": tm.makeNumericIndex(100, dtype="int64"),
|
|
"num_int32": tm.makeNumericIndex(100, dtype="int32"),
|
|
"num_int16": tm.makeNumericIndex(100, dtype="int16"),
|
|
"num_int8": tm.makeNumericIndex(100, dtype="int8"),
|
|
"num_uint64": tm.makeNumericIndex(100, dtype="uint64"),
|
|
"num_uint32": tm.makeNumericIndex(100, dtype="uint32"),
|
|
"num_uint16": tm.makeNumericIndex(100, dtype="uint16"),
|
|
"num_uint8": tm.makeNumericIndex(100, dtype="uint8"),
|
|
"num_float64": tm.makeNumericIndex(100, dtype="float64"),
|
|
"num_float32": tm.makeNumericIndex(100, dtype="float32"),
|
|
"bool-object": tm.makeBoolIndex(10).astype(object),
|
|
"bool-dtype": Index(np.random.randn(10) < 0),
|
|
"categorical": tm.makeCategoricalIndex(100),
|
|
"interval": tm.makeIntervalIndex(100),
|
|
"empty": Index([]),
|
|
"tuples": MultiIndex.from_tuples(zip(["foo", "bar", "baz"], [1, 2, 3])),
|
|
"mi-with-dt64tz-level": _create_mi_with_dt64tz_level(),
|
|
"multi": _create_multiindex(),
|
|
"repeats": Index([0, 0, 1, 1, 2, 2]),
|
|
"nullable_int": Index(np.arange(100), dtype="Int64"),
|
|
"nullable_uint": Index(np.arange(100), dtype="UInt16"),
|
|
"nullable_float": Index(np.arange(100), dtype="Float32"),
|
|
"nullable_bool": Index(np.arange(100).astype(bool), dtype="boolean"),
|
|
"string-python": Index(pd.array(tm.makeStringIndex(100), dtype="string[python]")),
|
|
}
|
|
if has_pyarrow:
|
|
idx = Index(pd.array(tm.makeStringIndex(100), dtype="string[pyarrow]"))
|
|
indices_dict["string-pyarrow"] = idx
|
|
|
|
|
|
@pytest.fixture(params=indices_dict.keys())
|
|
def index(request):
|
|
"""
|
|
Fixture for many "simple" kinds of indices.
|
|
|
|
These indices are unlikely to cover corner cases, e.g.
|
|
- no names
|
|
- no NaTs/NaNs
|
|
- no values near implementation bounds
|
|
- ...
|
|
"""
|
|
# copy to avoid mutation, e.g. setting .name
|
|
return indices_dict[request.param].copy()
|
|
|
|
|
|
# Needed to generate cartesian product of indices
|
|
index_fixture2 = index
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
key for key in indices_dict if not isinstance(indices_dict[key], MultiIndex)
|
|
]
|
|
)
|
|
def index_flat(request):
|
|
"""
|
|
index fixture, but excluding MultiIndex cases.
|
|
"""
|
|
key = request.param
|
|
return indices_dict[key].copy()
|
|
|
|
|
|
# Alias so we can test with cartesian product of index_flat
|
|
index_flat2 = index_flat
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
key
|
|
for key in indices_dict
|
|
if not (
|
|
key in ["int", "uint", "range", "empty", "repeats", "bool-dtype"]
|
|
or key.startswith("num_")
|
|
)
|
|
and not isinstance(indices_dict[key], MultiIndex)
|
|
]
|
|
)
|
|
def index_with_missing(request):
|
|
"""
|
|
Fixture for indices with missing values.
|
|
|
|
Integer-dtype and empty cases are excluded because they cannot hold missing
|
|
values.
|
|
|
|
MultiIndex is excluded because isna() is not defined for MultiIndex.
|
|
"""
|
|
|
|
# GH 35538. Use deep copy to avoid illusive bug on np-dev
|
|
# GHA pipeline that writes into indices_dict despite copy
|
|
ind = indices_dict[request.param].copy(deep=True)
|
|
vals = ind.values
|
|
if request.param in ["tuples", "mi-with-dt64tz-level", "multi"]:
|
|
# For setting missing values in the top level of MultiIndex
|
|
vals = ind.tolist()
|
|
vals[0] = (None,) + vals[0][1:]
|
|
vals[-1] = (None,) + vals[-1][1:]
|
|
return MultiIndex.from_tuples(vals)
|
|
else:
|
|
vals[0] = None
|
|
vals[-1] = None
|
|
return type(ind)(vals)
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# Series'
|
|
# ----------------------------------------------------------------
|
|
@pytest.fixture
|
|
def string_series() -> Series:
|
|
"""
|
|
Fixture for Series of floats with Index of unique strings
|
|
"""
|
|
s = tm.makeStringSeries()
|
|
s.name = "series"
|
|
return s
|
|
|
|
|
|
@pytest.fixture
|
|
def object_series() -> Series:
|
|
"""
|
|
Fixture for Series of dtype object with Index of unique strings
|
|
"""
|
|
s = tm.makeObjectSeries()
|
|
s.name = "objects"
|
|
return s
|
|
|
|
|
|
@pytest.fixture
|
|
def datetime_series() -> Series:
|
|
"""
|
|
Fixture for Series of floats with DatetimeIndex
|
|
"""
|
|
s = tm.makeTimeSeries()
|
|
s.name = "ts"
|
|
return s
|
|
|
|
|
|
def _create_series(index):
|
|
"""Helper for the _series dict"""
|
|
size = len(index)
|
|
data = np.random.randn(size)
|
|
return Series(data, index=index, name="a")
|
|
|
|
|
|
_series = {
|
|
f"series-with-{index_id}-index": _create_series(index)
|
|
for index_id, index in indices_dict.items()
|
|
}
|
|
|
|
|
|
@pytest.fixture
|
|
def series_with_simple_index(index) -> Series:
|
|
"""
|
|
Fixture for tests on series with changing types of indices.
|
|
"""
|
|
return _create_series(index)
|
|
|
|
|
|
@pytest.fixture
|
|
def series_with_multilevel_index() -> Series:
|
|
"""
|
|
Fixture with a Series with a 2-level MultiIndex.
|
|
"""
|
|
arrays = [
|
|
["bar", "bar", "baz", "baz", "qux", "qux", "foo", "foo"],
|
|
["one", "two", "one", "two", "one", "two", "one", "two"],
|
|
]
|
|
tuples = zip(*arrays)
|
|
index = MultiIndex.from_tuples(tuples)
|
|
data = np.random.randn(8)
|
|
ser = Series(data, index=index)
|
|
ser[3] = np.NaN
|
|
return ser
|
|
|
|
|
|
_narrow_series = {
|
|
f"{dtype.__name__}-series": tm.make_rand_series(name="a", dtype=dtype)
|
|
for dtype in tm.NARROW_NP_DTYPES
|
|
}
|
|
|
|
|
|
_index_or_series_objs = {**indices_dict, **_series, **_narrow_series}
|
|
|
|
|
|
@pytest.fixture(params=_index_or_series_objs.keys())
|
|
def index_or_series_obj(request):
|
|
"""
|
|
Fixture for tests on indexes, series and series with a narrow dtype
|
|
copy to avoid mutation, e.g. setting .name
|
|
"""
|
|
return _index_or_series_objs[request.param].copy(deep=True)
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# DataFrames
|
|
# ----------------------------------------------------------------
|
|
@pytest.fixture
|
|
def int_frame() -> DataFrame:
|
|
"""
|
|
Fixture for DataFrame of ints with index of unique strings
|
|
|
|
Columns are ['A', 'B', 'C', 'D']
|
|
|
|
A B C D
|
|
vpBeWjM651 1 0 1 0
|
|
5JyxmrP1En -1 0 0 0
|
|
qEDaoD49U2 -1 1 0 0
|
|
m66TkTfsFe 0 0 0 0
|
|
EHPaNzEUFm -1 0 -1 0
|
|
fpRJCevQhi 2 0 0 0
|
|
OlQvnmfi3Q 0 0 -2 0
|
|
... .. .. .. ..
|
|
uB1FPlz4uP 0 0 0 1
|
|
EcSe6yNzCU 0 0 -1 0
|
|
L50VudaiI8 -1 1 -2 0
|
|
y3bpw4nwIp 0 -1 0 0
|
|
H0RdLLwrCT 1 1 0 0
|
|
rY82K0vMwm 0 0 0 0
|
|
1OPIUjnkjk 2 0 0 0
|
|
|
|
[30 rows x 4 columns]
|
|
"""
|
|
return DataFrame(tm.getSeriesData()).astype("int64")
|
|
|
|
|
|
@pytest.fixture
|
|
def datetime_frame() -> DataFrame:
|
|
"""
|
|
Fixture for DataFrame of floats with DatetimeIndex
|
|
|
|
Columns are ['A', 'B', 'C', 'D']
|
|
|
|
A B C D
|
|
2000-01-03 -1.122153 0.468535 0.122226 1.693711
|
|
2000-01-04 0.189378 0.486100 0.007864 -1.216052
|
|
2000-01-05 0.041401 -0.835752 -0.035279 -0.414357
|
|
2000-01-06 0.430050 0.894352 0.090719 0.036939
|
|
2000-01-07 -0.620982 -0.668211 -0.706153 1.466335
|
|
2000-01-10 -0.752633 0.328434 -0.815325 0.699674
|
|
2000-01-11 -2.236969 0.615737 -0.829076 -1.196106
|
|
... ... ... ... ...
|
|
2000-02-03 1.642618 -0.579288 0.046005 1.385249
|
|
2000-02-04 -0.544873 -1.160962 -0.284071 -1.418351
|
|
2000-02-07 -2.656149 -0.601387 1.410148 0.444150
|
|
2000-02-08 -1.201881 -1.289040 0.772992 -1.445300
|
|
2000-02-09 1.377373 0.398619 1.008453 -0.928207
|
|
2000-02-10 0.473194 -0.636677 0.984058 0.511519
|
|
2000-02-11 -0.965556 0.408313 -1.312844 -0.381948
|
|
|
|
[30 rows x 4 columns]
|
|
"""
|
|
return DataFrame(tm.getTimeSeriesData())
|
|
|
|
|
|
@pytest.fixture
|
|
def float_frame() -> DataFrame:
|
|
"""
|
|
Fixture for DataFrame of floats with index of unique strings
|
|
|
|
Columns are ['A', 'B', 'C', 'D'].
|
|
|
|
A B C D
|
|
P7GACiRnxd -0.465578 -0.361863 0.886172 -0.053465
|
|
qZKh6afn8n -0.466693 -0.373773 0.266873 1.673901
|
|
tkp0r6Qble 0.148691 -0.059051 0.174817 1.598433
|
|
wP70WOCtv8 0.133045 -0.581994 -0.992240 0.261651
|
|
M2AeYQMnCz -1.207959 -0.185775 0.588206 0.563938
|
|
QEPzyGDYDo -0.381843 -0.758281 0.502575 -0.565053
|
|
r78Jwns6dn -0.653707 0.883127 0.682199 0.206159
|
|
... ... ... ... ...
|
|
IHEGx9NO0T -0.277360 0.113021 -1.018314 0.196316
|
|
lPMj8K27FA -1.313667 -0.604776 -1.305618 -0.863999
|
|
qa66YMWQa5 1.110525 0.475310 -0.747865 0.032121
|
|
yOa0ATsmcE -0.431457 0.067094 0.096567 -0.264962
|
|
65znX3uRNG 1.528446 0.160416 -0.109635 -0.032987
|
|
eCOBvKqf3e 0.235281 1.622222 0.781255 0.392871
|
|
xSucinXxuV -1.263557 0.252799 -0.552247 0.400426
|
|
|
|
[30 rows x 4 columns]
|
|
"""
|
|
return DataFrame(tm.getSeriesData())
|
|
|
|
|
|
@pytest.fixture
|
|
def mixed_type_frame() -> DataFrame:
|
|
"""
|
|
Fixture for DataFrame of float/int/string columns with RangeIndex
|
|
Columns are ['a', 'b', 'c', 'float32', 'int32'].
|
|
"""
|
|
return DataFrame(
|
|
{
|
|
"a": 1.0,
|
|
"b": 2,
|
|
"c": "foo",
|
|
"float32": np.array([1.0] * 10, dtype="float32"),
|
|
"int32": np.array([1] * 10, dtype="int32"),
|
|
},
|
|
index=np.arange(10),
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def rand_series_with_duplicate_datetimeindex() -> Series:
|
|
"""
|
|
Fixture for Series with a DatetimeIndex that has duplicates.
|
|
"""
|
|
dates = [
|
|
datetime(2000, 1, 2),
|
|
datetime(2000, 1, 2),
|
|
datetime(2000, 1, 2),
|
|
datetime(2000, 1, 3),
|
|
datetime(2000, 1, 3),
|
|
datetime(2000, 1, 3),
|
|
datetime(2000, 1, 4),
|
|
datetime(2000, 1, 4),
|
|
datetime(2000, 1, 4),
|
|
datetime(2000, 1, 5),
|
|
]
|
|
|
|
return Series(np.random.randn(len(dates)), index=dates)
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# Scalars
|
|
# ----------------------------------------------------------------
|
|
@pytest.fixture(
|
|
params=[
|
|
(Interval(left=0, right=5), IntervalDtype("int64", "right")),
|
|
(Interval(left=0.1, right=0.5), IntervalDtype("float64", "right")),
|
|
(Period("2012-01", freq="M"), "period[M]"),
|
|
(Period("2012-02-01", freq="D"), "period[D]"),
|
|
(
|
|
Timestamp("2011-01-01", tz="US/Eastern"),
|
|
DatetimeTZDtype(tz="US/Eastern"),
|
|
),
|
|
(Timedelta(seconds=500), "timedelta64[ns]"),
|
|
]
|
|
)
|
|
def ea_scalar_and_dtype(request):
|
|
return request.param
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# Operators & Operations
|
|
# ----------------------------------------------------------------
|
|
_all_arithmetic_operators = [
|
|
"__add__",
|
|
"__radd__",
|
|
"__sub__",
|
|
"__rsub__",
|
|
"__mul__",
|
|
"__rmul__",
|
|
"__floordiv__",
|
|
"__rfloordiv__",
|
|
"__truediv__",
|
|
"__rtruediv__",
|
|
"__pow__",
|
|
"__rpow__",
|
|
"__mod__",
|
|
"__rmod__",
|
|
]
|
|
|
|
|
|
@pytest.fixture(params=_all_arithmetic_operators)
|
|
def all_arithmetic_operators(request):
|
|
"""
|
|
Fixture for dunder names for common arithmetic operations.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
operator.add,
|
|
ops.radd,
|
|
operator.sub,
|
|
ops.rsub,
|
|
operator.mul,
|
|
ops.rmul,
|
|
operator.truediv,
|
|
ops.rtruediv,
|
|
operator.floordiv,
|
|
ops.rfloordiv,
|
|
operator.mod,
|
|
ops.rmod,
|
|
operator.pow,
|
|
ops.rpow,
|
|
operator.eq,
|
|
operator.ne,
|
|
operator.lt,
|
|
operator.le,
|
|
operator.gt,
|
|
operator.ge,
|
|
operator.and_,
|
|
ops.rand_,
|
|
operator.xor,
|
|
ops.rxor,
|
|
operator.or_,
|
|
ops.ror_,
|
|
]
|
|
)
|
|
def all_binary_operators(request):
|
|
"""
|
|
Fixture for operator and roperator arithmetic, comparison, and logical ops.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
operator.add,
|
|
ops.radd,
|
|
operator.sub,
|
|
ops.rsub,
|
|
operator.mul,
|
|
ops.rmul,
|
|
operator.truediv,
|
|
ops.rtruediv,
|
|
operator.floordiv,
|
|
ops.rfloordiv,
|
|
operator.mod,
|
|
ops.rmod,
|
|
operator.pow,
|
|
ops.rpow,
|
|
]
|
|
)
|
|
def all_arithmetic_functions(request):
|
|
"""
|
|
Fixture for operator and roperator arithmetic functions.
|
|
|
|
Notes
|
|
-----
|
|
This includes divmod and rdivmod, whereas all_arithmetic_operators
|
|
does not.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
_all_numeric_reductions = [
|
|
"sum",
|
|
"max",
|
|
"min",
|
|
"mean",
|
|
"prod",
|
|
"std",
|
|
"var",
|
|
"median",
|
|
"kurt",
|
|
"skew",
|
|
]
|
|
|
|
|
|
@pytest.fixture(params=_all_numeric_reductions)
|
|
def all_numeric_reductions(request):
|
|
"""
|
|
Fixture for numeric reduction names.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
_all_boolean_reductions = ["all", "any"]
|
|
|
|
|
|
@pytest.fixture(params=_all_boolean_reductions)
|
|
def all_boolean_reductions(request):
|
|
"""
|
|
Fixture for boolean reduction names.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
_all_reductions = _all_numeric_reductions + _all_boolean_reductions
|
|
|
|
|
|
@pytest.fixture(params=_all_reductions)
|
|
def all_reductions(request):
|
|
"""
|
|
Fixture for all (boolean + numeric) reduction names.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
operator.eq,
|
|
operator.ne,
|
|
operator.gt,
|
|
operator.ge,
|
|
operator.lt,
|
|
operator.le,
|
|
]
|
|
)
|
|
def comparison_op(request):
|
|
"""
|
|
Fixture for operator module comparison functions.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=["__le__", "__lt__", "__ge__", "__gt__"])
|
|
def compare_operators_no_eq_ne(request):
|
|
"""
|
|
Fixture for dunder names for compare operations except == and !=
|
|
|
|
* >=
|
|
* >
|
|
* <
|
|
* <=
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(
|
|
params=["__and__", "__rand__", "__or__", "__ror__", "__xor__", "__rxor__"]
|
|
)
|
|
def all_logical_operators(request):
|
|
"""
|
|
Fixture for dunder names for common logical operations
|
|
|
|
* |
|
|
* &
|
|
* ^
|
|
"""
|
|
return request.param
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# Data sets/files
|
|
# ----------------------------------------------------------------
|
|
@pytest.fixture
|
|
def strict_data_files(pytestconfig):
|
|
"""
|
|
Returns the configuration for the test setting `--strict-data-files`.
|
|
"""
|
|
return pytestconfig.getoption("--strict-data-files")
|
|
|
|
|
|
@pytest.fixture
|
|
def datapath(strict_data_files: str) -> Callable[..., str]:
|
|
"""
|
|
Get the path to a data file.
|
|
|
|
Parameters
|
|
----------
|
|
path : str
|
|
Path to the file, relative to ``pandas/tests/``
|
|
|
|
Returns
|
|
-------
|
|
path including ``pandas/tests``.
|
|
|
|
Raises
|
|
------
|
|
ValueError
|
|
If the path doesn't exist and the --strict-data-files option is set.
|
|
"""
|
|
BASE_PATH = os.path.join(os.path.dirname(__file__), "tests")
|
|
|
|
def deco(*args):
|
|
path = os.path.join(BASE_PATH, *args)
|
|
if not os.path.exists(path):
|
|
if strict_data_files:
|
|
raise ValueError(
|
|
f"Could not find file {path} and --strict-data-files is set."
|
|
)
|
|
else:
|
|
pytest.skip(f"Could not find {path}.")
|
|
return path
|
|
|
|
return deco
|
|
|
|
|
|
@pytest.fixture
|
|
def iris(datapath) -> DataFrame:
|
|
"""
|
|
The iris dataset as a DataFrame.
|
|
"""
|
|
return pd.read_csv(datapath("io", "data", "csv", "iris.csv"))
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# Time zones
|
|
# ----------------------------------------------------------------
|
|
TIMEZONES = [
|
|
None,
|
|
"UTC",
|
|
"US/Eastern",
|
|
"Asia/Tokyo",
|
|
"dateutil/US/Pacific",
|
|
"dateutil/Asia/Singapore",
|
|
"+01:15",
|
|
"-02:15",
|
|
"UTC+01:15",
|
|
"UTC-02:15",
|
|
tzutc(),
|
|
tzlocal(),
|
|
FixedOffset(300),
|
|
FixedOffset(0),
|
|
FixedOffset(-300),
|
|
timezone.utc,
|
|
timezone(timedelta(hours=1)),
|
|
timezone(timedelta(hours=-1), name="foo"),
|
|
]
|
|
if zoneinfo is not None:
|
|
TIMEZONES.extend([zoneinfo.ZoneInfo("US/Pacific"), zoneinfo.ZoneInfo("UTC")])
|
|
TIMEZONE_IDS = [repr(i) for i in TIMEZONES]
|
|
|
|
|
|
@td.parametrize_fixture_doc(str(TIMEZONE_IDS))
|
|
@pytest.fixture(params=TIMEZONES, ids=TIMEZONE_IDS)
|
|
def tz_naive_fixture(request):
|
|
"""
|
|
Fixture for trying timezones including default (None): {0}
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@td.parametrize_fixture_doc(str(TIMEZONE_IDS[1:]))
|
|
@pytest.fixture(params=TIMEZONES[1:], ids=TIMEZONE_IDS[1:])
|
|
def tz_aware_fixture(request):
|
|
"""
|
|
Fixture for trying explicit timezones: {0}
|
|
"""
|
|
return request.param
|
|
|
|
|
|
# Generate cartesian product of tz_aware_fixture:
|
|
tz_aware_fixture2 = tz_aware_fixture
|
|
|
|
|
|
_UTCS = ["utc", "dateutil/UTC", utc, tzutc(), timezone.utc]
|
|
if zoneinfo is not None:
|
|
_UTCS.append(zoneinfo.ZoneInfo("UTC"))
|
|
|
|
|
|
@pytest.fixture(params=_UTCS)
|
|
def utc_fixture(request):
|
|
"""
|
|
Fixture to provide variants of UTC timezone strings and tzinfo objects.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
utc_fixture2 = utc_fixture
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# Dtypes
|
|
# ----------------------------------------------------------------
|
|
@pytest.fixture(params=tm.STRING_DTYPES)
|
|
def string_dtype(request):
|
|
"""
|
|
Parametrized fixture for string dtypes.
|
|
|
|
* str
|
|
* 'str'
|
|
* 'U'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
"string[python]",
|
|
pytest.param(
|
|
"string[pyarrow]", marks=td.skip_if_no("pyarrow", min_version="1.0.0")
|
|
),
|
|
]
|
|
)
|
|
def nullable_string_dtype(request):
|
|
"""
|
|
Parametrized fixture for string dtypes.
|
|
|
|
* 'string[python]'
|
|
* 'string[pyarrow]'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
"python",
|
|
pytest.param("pyarrow", marks=td.skip_if_no("pyarrow", min_version="1.0.0")),
|
|
]
|
|
)
|
|
def string_storage(request):
|
|
"""
|
|
Parametrized fixture for pd.options.mode.string_storage.
|
|
|
|
* 'python'
|
|
* 'pyarrow'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
# Alias so we can test with cartesian product of string_storage
|
|
string_storage2 = string_storage
|
|
|
|
|
|
@pytest.fixture(params=tm.BYTES_DTYPES)
|
|
def bytes_dtype(request):
|
|
"""
|
|
Parametrized fixture for bytes dtypes.
|
|
|
|
* bytes
|
|
* 'bytes'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.OBJECT_DTYPES)
|
|
def object_dtype(request):
|
|
"""
|
|
Parametrized fixture for object dtypes.
|
|
|
|
* object
|
|
* 'object'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
"object",
|
|
"string[python]",
|
|
pytest.param(
|
|
"string[pyarrow]", marks=td.skip_if_no("pyarrow", min_version="1.0.0")
|
|
),
|
|
]
|
|
)
|
|
def any_string_dtype(request):
|
|
"""
|
|
Parametrized fixture for string dtypes.
|
|
* 'object'
|
|
* 'string[python]'
|
|
* 'string[pyarrow]'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.DATETIME64_DTYPES)
|
|
def datetime64_dtype(request):
|
|
"""
|
|
Parametrized fixture for datetime64 dtypes.
|
|
|
|
* 'datetime64[ns]'
|
|
* 'M8[ns]'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.TIMEDELTA64_DTYPES)
|
|
def timedelta64_dtype(request):
|
|
"""
|
|
Parametrized fixture for timedelta64 dtypes.
|
|
|
|
* 'timedelta64[ns]'
|
|
* 'm8[ns]'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture
|
|
def fixed_now_ts() -> Timestamp:
|
|
"""
|
|
Fixture emits fixed Timestamp.now()
|
|
"""
|
|
return Timestamp(
|
|
year=2021, month=1, day=1, hour=12, minute=4, second=13, microsecond=22
|
|
)
|
|
|
|
|
|
@pytest.fixture(params=tm.FLOAT_NUMPY_DTYPES)
|
|
def float_numpy_dtype(request):
|
|
"""
|
|
Parameterized fixture for float dtypes.
|
|
|
|
* float
|
|
* 'float32'
|
|
* 'float64'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.FLOAT_EA_DTYPES)
|
|
def float_ea_dtype(request):
|
|
"""
|
|
Parameterized fixture for float dtypes.
|
|
|
|
* 'Float32'
|
|
* 'Float64'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.FLOAT_NUMPY_DTYPES + tm.FLOAT_EA_DTYPES)
|
|
def any_float_dtype(request):
|
|
"""
|
|
Parameterized fixture for float dtypes.
|
|
|
|
* float
|
|
* 'float32'
|
|
* 'float64'
|
|
* 'Float32'
|
|
* 'Float64'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.COMPLEX_DTYPES)
|
|
def complex_dtype(request):
|
|
"""
|
|
Parameterized fixture for complex dtypes.
|
|
|
|
* complex
|
|
* 'complex64'
|
|
* 'complex128'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.SIGNED_INT_NUMPY_DTYPES)
|
|
def any_signed_int_numpy_dtype(request):
|
|
"""
|
|
Parameterized fixture for signed integer dtypes.
|
|
|
|
* int
|
|
* 'int8'
|
|
* 'int16'
|
|
* 'int32'
|
|
* 'int64'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.UNSIGNED_INT_NUMPY_DTYPES)
|
|
def any_unsigned_int_numpy_dtype(request):
|
|
"""
|
|
Parameterized fixture for unsigned integer dtypes.
|
|
|
|
* 'uint8'
|
|
* 'uint16'
|
|
* 'uint32'
|
|
* 'uint64'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.ALL_INT_NUMPY_DTYPES)
|
|
def any_int_numpy_dtype(request):
|
|
"""
|
|
Parameterized fixture for any integer dtype.
|
|
|
|
* int
|
|
* 'int8'
|
|
* 'uint8'
|
|
* 'int16'
|
|
* 'uint16'
|
|
* 'int32'
|
|
* 'uint32'
|
|
* 'int64'
|
|
* 'uint64'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.ALL_INT_EA_DTYPES)
|
|
def any_int_ea_dtype(request):
|
|
"""
|
|
Parameterized fixture for any nullable integer dtype.
|
|
|
|
* 'UInt8'
|
|
* 'Int8'
|
|
* 'UInt16'
|
|
* 'Int16'
|
|
* 'UInt32'
|
|
* 'Int32'
|
|
* 'UInt64'
|
|
* 'Int64'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.ALL_INT_NUMPY_DTYPES + tm.ALL_INT_EA_DTYPES)
|
|
def any_int_dtype(request):
|
|
"""
|
|
Parameterized fixture for any nullable integer dtype.
|
|
|
|
* int
|
|
* 'int8'
|
|
* 'uint8'
|
|
* 'int16'
|
|
* 'uint16'
|
|
* 'int32'
|
|
* 'uint32'
|
|
* 'int64'
|
|
* 'uint64'
|
|
* 'UInt8'
|
|
* 'Int8'
|
|
* 'UInt16'
|
|
* 'Int16'
|
|
* 'UInt32'
|
|
* 'Int32'
|
|
* 'UInt64'
|
|
* 'Int64'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.ALL_INT_EA_DTYPES + tm.FLOAT_EA_DTYPES)
|
|
def any_numeric_ea_dtype(request):
|
|
"""
|
|
Parameterized fixture for any nullable integer dtype and
|
|
any float ea dtypes.
|
|
|
|
* 'UInt8'
|
|
* 'Int8'
|
|
* 'UInt16'
|
|
* 'Int16'
|
|
* 'UInt32'
|
|
* 'Int32'
|
|
* 'UInt64'
|
|
* 'Int64'
|
|
* 'Float32'
|
|
* 'Float64'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.SIGNED_INT_EA_DTYPES)
|
|
def any_signed_int_ea_dtype(request):
|
|
"""
|
|
Parameterized fixture for any signed nullable integer dtype.
|
|
|
|
* 'Int8'
|
|
* 'Int16'
|
|
* 'Int32'
|
|
* 'Int64'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.ALL_REAL_NUMPY_DTYPES)
|
|
def any_real_numpy_dtype(request):
|
|
"""
|
|
Parameterized fixture for any (purely) real numeric dtype.
|
|
|
|
* int
|
|
* 'int8'
|
|
* 'uint8'
|
|
* 'int16'
|
|
* 'uint16'
|
|
* 'int32'
|
|
* 'uint32'
|
|
* 'int64'
|
|
* 'uint64'
|
|
* float
|
|
* 'float32'
|
|
* 'float64'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.ALL_NUMPY_DTYPES)
|
|
def any_numpy_dtype(request):
|
|
"""
|
|
Parameterized fixture for all numpy dtypes.
|
|
|
|
* bool
|
|
* 'bool'
|
|
* int
|
|
* 'int8'
|
|
* 'uint8'
|
|
* 'int16'
|
|
* 'uint16'
|
|
* 'int32'
|
|
* 'uint32'
|
|
* 'int64'
|
|
* 'uint64'
|
|
* float
|
|
* 'float32'
|
|
* 'float64'
|
|
* complex
|
|
* 'complex64'
|
|
* 'complex128'
|
|
* str
|
|
* 'str'
|
|
* 'U'
|
|
* bytes
|
|
* 'bytes'
|
|
* 'datetime64[ns]'
|
|
* 'M8[ns]'
|
|
* 'timedelta64[ns]'
|
|
* 'm8[ns]'
|
|
* object
|
|
* 'object'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(
|
|
params=tm.ALL_REAL_NUMPY_DTYPES
|
|
+ tm.COMPLEX_DTYPES
|
|
+ tm.ALL_INT_EA_DTYPES
|
|
+ tm.FLOAT_EA_DTYPES
|
|
)
|
|
def any_numeric_dtype(request):
|
|
"""
|
|
Parameterized fixture for all numeric dtypes.
|
|
|
|
* int
|
|
* 'int8'
|
|
* 'uint8'
|
|
* 'int16'
|
|
* 'uint16'
|
|
* 'int32'
|
|
* 'uint32'
|
|
* 'int64'
|
|
* 'uint64'
|
|
* float
|
|
* 'float32'
|
|
* 'float64'
|
|
* complex
|
|
* 'complex64'
|
|
* 'complex128'
|
|
* 'UInt8'
|
|
* 'Int8'
|
|
* 'UInt16'
|
|
* 'Int16'
|
|
* 'UInt32'
|
|
* 'Int32'
|
|
* 'UInt64'
|
|
* 'Int64'
|
|
* 'Float32'
|
|
* 'Float64'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
# categoricals are handled separately
|
|
_any_skipna_inferred_dtype = [
|
|
("string", ["a", np.nan, "c"]),
|
|
("string", ["a", pd.NA, "c"]),
|
|
("mixed", ["a", pd.NaT, "c"]), # pd.NaT not considered valid by is_string_array
|
|
("bytes", [b"a", np.nan, b"c"]),
|
|
("empty", [np.nan, np.nan, np.nan]),
|
|
("empty", []),
|
|
("mixed-integer", ["a", np.nan, 2]),
|
|
("mixed", ["a", np.nan, 2.0]),
|
|
("floating", [1.0, np.nan, 2.0]),
|
|
("integer", [1, np.nan, 2]),
|
|
("mixed-integer-float", [1, np.nan, 2.0]),
|
|
("decimal", [Decimal(1), np.nan, Decimal(2)]),
|
|
("boolean", [True, np.nan, False]),
|
|
("boolean", [True, pd.NA, False]),
|
|
("datetime64", [np.datetime64("2013-01-01"), np.nan, np.datetime64("2018-01-01")]),
|
|
("datetime", [Timestamp("20130101"), np.nan, Timestamp("20180101")]),
|
|
("date", [date(2013, 1, 1), np.nan, date(2018, 1, 1)]),
|
|
# The following two dtypes are commented out due to GH 23554
|
|
# ('complex', [1 + 1j, np.nan, 2 + 2j]),
|
|
# ('timedelta64', [np.timedelta64(1, 'D'),
|
|
# np.nan, np.timedelta64(2, 'D')]),
|
|
("timedelta", [timedelta(1), np.nan, timedelta(2)]),
|
|
("time", [time(1), np.nan, time(2)]),
|
|
("period", [Period(2013), pd.NaT, Period(2018)]),
|
|
("interval", [Interval(0, 1), np.nan, Interval(0, 2)]),
|
|
]
|
|
ids, _ = zip(*_any_skipna_inferred_dtype) # use inferred type as fixture-id
|
|
|
|
|
|
@pytest.fixture(params=_any_skipna_inferred_dtype, ids=ids)
|
|
def any_skipna_inferred_dtype(request):
|
|
"""
|
|
Fixture for all inferred dtypes from _libs.lib.infer_dtype
|
|
|
|
The covered (inferred) types are:
|
|
* 'string'
|
|
* 'empty'
|
|
* 'bytes'
|
|
* 'mixed'
|
|
* 'mixed-integer'
|
|
* 'mixed-integer-float'
|
|
* 'floating'
|
|
* 'integer'
|
|
* 'decimal'
|
|
* 'boolean'
|
|
* 'datetime64'
|
|
* 'datetime'
|
|
* 'date'
|
|
* 'timedelta'
|
|
* 'time'
|
|
* 'period'
|
|
* 'interval'
|
|
|
|
Returns
|
|
-------
|
|
inferred_dtype : str
|
|
The string for the inferred dtype from _libs.lib.infer_dtype
|
|
values : np.ndarray
|
|
An array of object dtype that will be inferred to have
|
|
`inferred_dtype`
|
|
|
|
Examples
|
|
--------
|
|
>>> import pandas._libs.lib as lib
|
|
>>>
|
|
>>> def test_something(any_skipna_inferred_dtype):
|
|
... inferred_dtype, values = any_skipna_inferred_dtype
|
|
... # will pass
|
|
... assert lib.infer_dtype(values, skipna=True) == inferred_dtype
|
|
"""
|
|
inferred_dtype, values = request.param
|
|
values = np.array(values, dtype=object) # object dtype to avoid casting
|
|
|
|
# correctness of inference tested in tests/dtypes/test_inference.py
|
|
return inferred_dtype, values
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# Misc
|
|
# ----------------------------------------------------------------
|
|
@pytest.fixture
|
|
def ip():
|
|
"""
|
|
Get an instance of IPython.InteractiveShell.
|
|
|
|
Will raise a skip if IPython is not installed.
|
|
"""
|
|
pytest.importorskip("IPython", minversion="6.0.0")
|
|
from IPython.core.interactiveshell import InteractiveShell
|
|
|
|
# GH#35711 make sure sqlite history file handle is not leaked
|
|
from traitlets.config import Config # isort:skip
|
|
|
|
c = Config()
|
|
c.HistoryManager.hist_file = ":memory:"
|
|
|
|
return InteractiveShell(config=c)
|
|
|
|
|
|
@pytest.fixture(params=["bsr", "coo", "csc", "csr", "dia", "dok", "lil"])
|
|
def spmatrix(request):
|
|
"""
|
|
Yields scipy sparse matrix classes.
|
|
"""
|
|
from scipy import sparse
|
|
|
|
return getattr(sparse, request.param + "_matrix")
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
getattr(pd.offsets, o)
|
|
for o in pd.offsets.__all__
|
|
if issubclass(getattr(pd.offsets, o), pd.offsets.Tick) and o != "Tick"
|
|
]
|
|
)
|
|
def tick_classes(request):
|
|
"""
|
|
Fixture for Tick based datetime offsets available for a time series.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=[None, lambda x: x])
|
|
def sort_by_key(request):
|
|
"""
|
|
Simple fixture for testing keys in sorting methods.
|
|
Tests None (no key) and the identity key.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture()
|
|
def fsspectest():
|
|
pytest.importorskip("fsspec")
|
|
from fsspec import register_implementation
|
|
from fsspec.implementations.memory import MemoryFileSystem
|
|
from fsspec.registry import _registry as registry
|
|
|
|
class TestMemoryFS(MemoryFileSystem):
|
|
protocol = "testmem"
|
|
test = [None]
|
|
|
|
def __init__(self, **kwargs) -> None:
|
|
self.test[0] = kwargs.pop("test", None)
|
|
super().__init__(**kwargs)
|
|
|
|
register_implementation("testmem", TestMemoryFS, clobber=True)
|
|
yield TestMemoryFS()
|
|
registry.pop("testmem", None)
|
|
TestMemoryFS.test[0] = None
|
|
TestMemoryFS.store.clear()
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
("foo", None, None),
|
|
("Egon", "Venkman", None),
|
|
("NCC1701D", "NCC1701D", "NCC1701D"),
|
|
# possibly-matching NAs
|
|
(np.nan, np.nan, np.nan),
|
|
(np.nan, pd.NaT, None),
|
|
(np.nan, pd.NA, None),
|
|
(pd.NA, pd.NA, pd.NA),
|
|
]
|
|
)
|
|
def names(request):
|
|
"""
|
|
A 3-tuple of names, the first two for operands, the last for a result.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=[tm.setitem, tm.loc, tm.iloc])
|
|
def indexer_sli(request):
|
|
"""
|
|
Parametrize over __setitem__, loc.__setitem__, iloc.__setitem__
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=[tm.loc, tm.iloc])
|
|
def indexer_li(request):
|
|
"""
|
|
Parametrize over loc.__getitem__, iloc.__getitem__
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=[tm.setitem, tm.iloc])
|
|
def indexer_si(request):
|
|
"""
|
|
Parametrize over __setitem__, iloc.__setitem__
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=[tm.setitem, tm.loc])
|
|
def indexer_sl(request):
|
|
"""
|
|
Parametrize over __setitem__, loc.__setitem__
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=[tm.at, tm.loc])
|
|
def indexer_al(request):
|
|
"""
|
|
Parametrize over at.__setitem__, loc.__setitem__
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=[tm.iat, tm.iloc])
|
|
def indexer_ial(request):
|
|
"""
|
|
Parametrize over iat.__setitem__, iloc.__setitem__
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture
|
|
def using_array_manager():
|
|
"""
|
|
Fixture to check if the array manager is being used.
|
|
"""
|
|
return pd.options.mode.data_manager == "array"
|
|
|
|
|
|
@pytest.fixture
|
|
def using_copy_on_write() -> bool:
|
|
"""
|
|
Fixture to check if Copy-on-Write is enabled.
|
|
"""
|
|
return pd.options.mode.copy_on_write and pd.options.mode.data_manager == "block"
|