from datetime import datetime import re import numpy as np import pytest from pandas._libs import iNaT import pandas._testing as tm import pandas.core.algorithms as algos @pytest.fixture(params=[True, False]) def writeable(request): return request.param # Check that take_nd works both with writeable arrays # (in which case fast typed memory-views implementation) # and read-only arrays alike. @pytest.fixture( params=[ (np.float64, True), (np.float32, True), (np.uint64, False), (np.uint32, False), (np.uint16, False), (np.uint8, False), (np.int64, False), (np.int32, False), (np.int16, False), (np.int8, False), (np.object_, True), (np.bool_, False), ] ) def dtype_can_hold_na(request): return request.param @pytest.fixture( params=[ (np.int8, np.int16(127), np.int8), (np.int8, np.int16(128), np.int16), (np.int32, 1, np.int32), (np.int32, 2.0, np.float64), (np.int32, 3.0 + 4.0j, np.complex128), (np.int32, True, np.object_), (np.int32, "", np.object_), (np.float64, 1, np.float64), (np.float64, 2.0, np.float64), (np.float64, 3.0 + 4.0j, np.complex128), (np.float64, True, np.object_), (np.float64, "", np.object_), (np.complex128, 1, np.complex128), (np.complex128, 2.0, np.complex128), (np.complex128, 3.0 + 4.0j, np.complex128), (np.complex128, True, np.object_), (np.complex128, "", np.object_), (np.bool_, 1, np.object_), (np.bool_, 2.0, np.object_), (np.bool_, 3.0 + 4.0j, np.object_), (np.bool_, True, np.bool_), (np.bool_, "", np.object_), ] ) def dtype_fill_out_dtype(request): return request.param class TestTake: # Standard incompatible fill error. fill_error = re.compile("Incompatible type for fill_value") def test_1d_fill_nonna(self, dtype_fill_out_dtype): dtype, fill_value, out_dtype = dtype_fill_out_dtype data = np.random.randint(0, 2, 4).astype(dtype) indexer = [2, 1, 0, -1] result = algos.take_nd(data, indexer, fill_value=fill_value) assert (result[[0, 1, 2]] == data[[2, 1, 0]]).all() assert result[3] == fill_value assert result.dtype == out_dtype indexer = [2, 1, 0, 1] result = algos.take_nd(data, indexer, fill_value=fill_value) assert (result[[0, 1, 2, 3]] == data[indexer]).all() assert result.dtype == dtype def test_2d_fill_nonna(self, dtype_fill_out_dtype): dtype, fill_value, out_dtype = dtype_fill_out_dtype data = np.random.randint(0, 2, (5, 3)).astype(dtype) indexer = [2, 1, 0, -1] result = algos.take_nd(data, indexer, axis=0, fill_value=fill_value) assert (result[[0, 1, 2], :] == data[[2, 1, 0], :]).all() assert (result[3, :] == fill_value).all() assert result.dtype == out_dtype result = algos.take_nd(data, indexer, axis=1, fill_value=fill_value) assert (result[:, [0, 1, 2]] == data[:, [2, 1, 0]]).all() assert (result[:, 3] == fill_value).all() assert result.dtype == out_dtype indexer = [2, 1, 0, 1] result = algos.take_nd(data, indexer, axis=0, fill_value=fill_value) assert (result[[0, 1, 2, 3], :] == data[indexer, :]).all() assert result.dtype == dtype result = algos.take_nd(data, indexer, axis=1, fill_value=fill_value) assert (result[:, [0, 1, 2, 3]] == data[:, indexer]).all() assert result.dtype == dtype def test_3d_fill_nonna(self, dtype_fill_out_dtype): dtype, fill_value, out_dtype = dtype_fill_out_dtype data = np.random.randint(0, 2, (5, 4, 3)).astype(dtype) indexer = [2, 1, 0, -1] result = algos.take_nd(data, indexer, axis=0, fill_value=fill_value) assert (result[[0, 1, 2], :, :] == data[[2, 1, 0], :, :]).all() assert (result[3, :, :] == fill_value).all() assert result.dtype == out_dtype result = algos.take_nd(data, indexer, axis=1, fill_value=fill_value) assert (result[:, [0, 1, 2], :] == data[:, [2, 1, 0], :]).all() assert (result[:, 3, :] == fill_value).all() assert result.dtype == out_dtype result = algos.take_nd(data, indexer, axis=2, fill_value=fill_value) assert (result[:, :, [0, 1, 2]] == data[:, :, [2, 1, 0]]).all() assert (result[:, :, 3] == fill_value).all() assert result.dtype == out_dtype indexer = [2, 1, 0, 1] result = algos.take_nd(data, indexer, axis=0, fill_value=fill_value) assert (result[[0, 1, 2, 3], :, :] == data[indexer, :, :]).all() assert result.dtype == dtype result = algos.take_nd(data, indexer, axis=1, fill_value=fill_value) assert (result[:, [0, 1, 2, 3], :] == data[:, indexer, :]).all() assert result.dtype == dtype result = algos.take_nd(data, indexer, axis=2, fill_value=fill_value) assert (result[:, :, [0, 1, 2, 3]] == data[:, :, indexer]).all() assert result.dtype == dtype def test_1d_other_dtypes(self): arr = np.random.randn(10).astype(np.float32) indexer = [1, 2, 3, -1] result = algos.take_nd(arr, indexer) expected = arr.take(indexer) expected[-1] = np.nan tm.assert_almost_equal(result, expected) def test_2d_other_dtypes(self): arr = np.random.randn(10, 5).astype(np.float32) indexer = [1, 2, 3, -1] # axis=0 result = algos.take_nd(arr, indexer, axis=0) expected = arr.take(indexer, axis=0) expected[-1] = np.nan tm.assert_almost_equal(result, expected) # axis=1 result = algos.take_nd(arr, indexer, axis=1) expected = arr.take(indexer, axis=1) expected[:, -1] = np.nan tm.assert_almost_equal(result, expected) def test_1d_bool(self): arr = np.array([0, 1, 0], dtype=bool) result = algos.take_nd(arr, [0, 2, 2, 1]) expected = arr.take([0, 2, 2, 1]) tm.assert_numpy_array_equal(result, expected) result = algos.take_nd(arr, [0, 2, -1]) assert result.dtype == np.object_ def test_2d_bool(self): arr = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 1]], dtype=bool) result = algos.take_nd(arr, [0, 2, 2, 1]) expected = arr.take([0, 2, 2, 1], axis=0) tm.assert_numpy_array_equal(result, expected) result = algos.take_nd(arr, [0, 2, 2, 1], axis=1) expected = arr.take([0, 2, 2, 1], axis=1) tm.assert_numpy_array_equal(result, expected) result = algos.take_nd(arr, [0, 2, -1]) assert result.dtype == np.object_ def test_2d_float32(self): arr = np.random.randn(4, 3).astype(np.float32) indexer = [0, 2, -1, 1, -1] # axis=0 result = algos.take_nd(arr, indexer, axis=0) expected = arr.take(indexer, axis=0) expected[[2, 4], :] = np.nan tm.assert_almost_equal(result, expected) # axis=1 result = algos.take_nd(arr, indexer, axis=1) expected = arr.take(indexer, axis=1) expected[:, [2, 4]] = np.nan tm.assert_almost_equal(result, expected) def test_2d_datetime64(self): # 2005/01/01 - 2006/01/01 arr = np.random.randint(11_045_376, 11_360_736, (5, 3)) * 100_000_000_000 arr = arr.view(dtype="datetime64[ns]") indexer = [0, 2, -1, 1, -1] # axis=0 result = algos.take_nd(arr, indexer, axis=0) expected = arr.take(indexer, axis=0) expected.view(np.int64)[[2, 4], :] = iNaT tm.assert_almost_equal(result, expected) result = algos.take_nd(arr, indexer, axis=0, fill_value=datetime(2007, 1, 1)) expected = arr.take(indexer, axis=0) expected[[2, 4], :] = datetime(2007, 1, 1) tm.assert_almost_equal(result, expected) # axis=1 result = algos.take_nd(arr, indexer, axis=1) expected = arr.take(indexer, axis=1) expected.view(np.int64)[:, [2, 4]] = iNaT tm.assert_almost_equal(result, expected) result = algos.take_nd(arr, indexer, axis=1, fill_value=datetime(2007, 1, 1)) expected = arr.take(indexer, axis=1) expected[:, [2, 4]] = datetime(2007, 1, 1) tm.assert_almost_equal(result, expected) def test_take_axis_0(self): arr = np.arange(12).reshape(4, 3) result = algos.take(arr, [0, -1]) expected = np.array([[0, 1, 2], [9, 10, 11]]) tm.assert_numpy_array_equal(result, expected) # allow_fill=True result = algos.take(arr, [0, -1], allow_fill=True, fill_value=0) expected = np.array([[0, 1, 2], [0, 0, 0]]) tm.assert_numpy_array_equal(result, expected) def test_take_axis_1(self): arr = np.arange(12).reshape(4, 3) result = algos.take(arr, [0, -1], axis=1) expected = np.array([[0, 2], [3, 5], [6, 8], [9, 11]]) tm.assert_numpy_array_equal(result, expected) # allow_fill=True result = algos.take(arr, [0, -1], axis=1, allow_fill=True, fill_value=0) expected = np.array([[0, 0], [3, 0], [6, 0], [9, 0]]) tm.assert_numpy_array_equal(result, expected) # GH#26976 make sure we validate along the correct axis with pytest.raises(IndexError, match="indices are out-of-bounds"): algos.take(arr, [0, 3], axis=1, allow_fill=True, fill_value=0) def test_take_non_hashable_fill_value(self): arr = np.array([1, 2, 3]) indexer = np.array([1, -1]) with pytest.raises(ValueError, match="fill_value must be a scalar"): algos.take(arr, indexer, allow_fill=True, fill_value=[1]) # with object dtype it is allowed arr = np.array([1, 2, 3], dtype=object) result = algos.take(arr, indexer, allow_fill=True, fill_value=[1]) expected = np.array([2, [1]], dtype=object) tm.assert_numpy_array_equal(result, expected) class TestExtensionTake: # The take method found in pd.api.extensions def test_bounds_check_large(self): arr = np.array([1, 2]) msg = "indices are out-of-bounds" with pytest.raises(IndexError, match=msg): algos.take(arr, [2, 3], allow_fill=True) msg = "index 2 is out of bounds for( axis 0 with)? size 2" with pytest.raises(IndexError, match=msg): algos.take(arr, [2, 3], allow_fill=False) def test_bounds_check_small(self): arr = np.array([1, 2, 3], dtype=np.int64) indexer = [0, -1, -2] msg = r"'indices' contains values less than allowed \(-2 < -1\)" with pytest.raises(ValueError, match=msg): algos.take(arr, indexer, allow_fill=True) result = algos.take(arr, indexer) expected = np.array([1, 3, 2], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("allow_fill", [True, False]) def test_take_empty(self, allow_fill): arr = np.array([], dtype=np.int64) # empty take is ok result = algos.take(arr, [], allow_fill=allow_fill) tm.assert_numpy_array_equal(arr, result) msg = "|".join( [ "cannot do a non-empty take from an empty axes.", "indices are out-of-bounds", ] ) with pytest.raises(IndexError, match=msg): algos.take(arr, [0], allow_fill=allow_fill) def test_take_na_empty(self): result = algos.take(np.array([]), [-1, -1], allow_fill=True, fill_value=0.0) expected = np.array([0.0, 0.0]) tm.assert_numpy_array_equal(result, expected) def test_take_coerces_list(self): arr = [1, 2, 3] result = algos.take(arr, [0, 0]) expected = np.array([1, 1]) tm.assert_numpy_array_equal(result, expected)