import numpy as np import pytest from pandas import Series from pandas.core import strings as strings _any_string_method = [ ("cat", (), {"sep": ","}), ("cat", (Series(list("zyx")),), {"sep": ",", "join": "left"}), ("center", (10,), {}), ("contains", ("a",), {}), ("count", ("a",), {}), ("decode", ("UTF-8",), {}), ("encode", ("UTF-8",), {}), ("endswith", ("a",), {}), ("endswith", ("a",), {"na": True}), ("endswith", ("a",), {"na": False}), ("extract", ("([a-z]*)",), {"expand": False}), ("extract", ("([a-z]*)",), {"expand": True}), ("extractall", ("([a-z]*)",), {}), ("find", ("a",), {}), ("findall", ("a",), {}), ("get", (0,), {}), # because "index" (and "rindex") fail intentionally # if the string is not found, search only for empty string ("index", ("",), {}), ("join", (",",), {}), ("ljust", (10,), {}), ("match", ("a",), {}), ("fullmatch", ("a",), {}), ("normalize", ("NFC",), {}), ("pad", (10,), {}), ("partition", (" ",), {"expand": False}), ("partition", (" ",), {"expand": True}), ("repeat", (3,), {}), ("replace", ("a", "z"), {}), ("rfind", ("a",), {}), ("rindex", ("",), {}), ("rjust", (10,), {}), ("rpartition", (" ",), {"expand": False}), ("rpartition", (" ",), {"expand": True}), ("slice", (0, 1), {}), ("slice_replace", (0, 1, "z"), {}), ("split", (" ",), {"expand": False}), ("split", (" ",), {"expand": True}), ("startswith", ("a",), {}), ("startswith", ("a",), {"na": True}), ("startswith", ("a",), {"na": False}), ("removeprefix", ("a",), {}), ("removesuffix", ("a",), {}), # translating unicode points of "a" to "d" ("translate", ({97: 100},), {}), ("wrap", (2,), {}), ("zfill", (10,), {}), ] + list( zip( [ # methods without positional arguments: zip with empty tuple and empty dict "capitalize", "cat", "get_dummies", "isalnum", "isalpha", "isdecimal", "isdigit", "islower", "isnumeric", "isspace", "istitle", "isupper", "len", "lower", "lstrip", "partition", "rpartition", "rsplit", "rstrip", "slice", "slice_replace", "split", "strip", "swapcase", "title", "upper", "casefold", ], [()] * 100, [{}] * 100, ) ) ids, _, _ = zip(*_any_string_method) # use method name as fixture-id missing_methods = { f for f in dir(strings.StringMethods) if not f.startswith("_") } - set(ids) # test that the above list captures all methods of StringMethods assert not missing_methods @pytest.fixture(params=_any_string_method, ids=ids) def any_string_method(request): """ Fixture for all public methods of `StringMethods` This fixture returns a tuple of the method name and sample arguments necessary to call the method. Returns ------- method_name : str The name of the method in `StringMethods` args : tuple Sample values for the positional arguments kwargs : dict Sample values for the keyword arguments Examples -------- >>> def test_something(any_string_method): ... s = Series(['a', 'b', np.nan, 'd']) ... ... method_name, args, kwargs = any_string_method ... method = getattr(s.str, method_name) ... # will not raise ... method(*args, **kwargs) """ return request.param # subset of the full set from pandas/conftest.py _any_allowed_skipna_inferred_dtype = [ ("string", ["a", np.nan, "c"]), ("bytes", [b"a", np.nan, b"c"]), ("empty", [np.nan, np.nan, np.nan]), ("empty", []), ("mixed-integer", ["a", np.nan, 2]), ] ids, _ = zip(*_any_allowed_skipna_inferred_dtype) # use inferred type as id @pytest.fixture(params=_any_allowed_skipna_inferred_dtype, ids=ids) def any_allowed_skipna_inferred_dtype(request): """ Fixture for all (inferred) dtypes allowed in StringMethods.__init__ The covered (inferred) types are: * 'string' * 'empty' * 'bytes' * 'mixed' * 'mixed-integer' Returns ------- inferred_dtype : str The string for the inferred dtype from _libs.lib.infer_dtype values : np.ndarray An array of object dtype that will be inferred to have `inferred_dtype` Examples -------- >>> import pandas._libs.lib as lib >>> >>> def test_something(any_allowed_skipna_inferred_dtype): ... inferred_dtype, values = any_allowed_skipna_inferred_dtype ... # will pass ... assert lib.infer_dtype(values, skipna=True) == inferred_dtype ... ... # constructor for .str-accessor will also pass ... Series(values).str """ inferred_dtype, values = request.param values = np.array(values, dtype=object) # object dtype to avoid casting # correctness of inference tested in tests/dtypes/test_inference.py return inferred_dtype, values