""" Tests for Series cumulative operations. See also -------- tests.frame.test_cumulative """ import numpy as np import pytest import pandas as pd import pandas._testing as tm methods = { "cumsum": np.cumsum, "cumprod": np.cumprod, "cummin": np.minimum.accumulate, "cummax": np.maximum.accumulate, } class TestSeriesCumulativeOps: @pytest.mark.parametrize("func", [np.cumsum, np.cumprod]) def test_datetime_series(self, datetime_series, func): tm.assert_numpy_array_equal( func(datetime_series).values, func(np.array(datetime_series)), check_dtype=True, ) # with missing values ts = datetime_series.copy() ts[::2] = np.NaN result = func(ts)[1::2] expected = func(np.array(ts.dropna())) tm.assert_numpy_array_equal(result.values, expected, check_dtype=False) @pytest.mark.parametrize("method", ["cummin", "cummax"]) def test_cummin_cummax(self, datetime_series, method): ufunc = methods[method] result = getattr(datetime_series, method)().values expected = ufunc(np.array(datetime_series)) tm.assert_numpy_array_equal(result, expected) ts = datetime_series.copy() ts[::2] = np.NaN result = getattr(ts, method)()[1::2] expected = ufunc(ts.dropna()) result.index = result.index._with_freq(None) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "ts", [ pd.Timedelta(0), pd.Timestamp("1999-12-31"), pd.Timestamp("1999-12-31").tz_localize("US/Pacific"), ], ) @pytest.mark.parametrize( "method, skipna, exp_tdi", [ ["cummax", True, ["NaT", "2 days", "NaT", "2 days", "NaT", "3 days"]], ["cummin", True, ["NaT", "2 days", "NaT", "1 days", "NaT", "1 days"]], [ "cummax", False, ["NaT", "2 days", "2 days", "2 days", "2 days", "3 days"], ], [ "cummin", False, ["NaT", "2 days", "2 days", "1 days", "1 days", "1 days"], ], ], ) def test_cummin_cummax_datetimelike(self, ts, method, skipna, exp_tdi): # with ts==pd.Timedelta(0), we are testing td64; with naive Timestamp # we are testing datetime64[ns]; with Timestamp[US/Pacific] # we are testing dt64tz tdi = pd.to_timedelta(["NaT", "2 days", "NaT", "1 days", "NaT", "3 days"]) ser = pd.Series(tdi + ts) exp_tdi = pd.to_timedelta(exp_tdi) expected = pd.Series(exp_tdi + ts) result = getattr(ser, method)(skipna=skipna) tm.assert_series_equal(expected, result) @pytest.mark.parametrize( "arg", [ [False, False, False, True, True, False, False], [False, False, False, False, False, False, False], ], ) @pytest.mark.parametrize( "func", [lambda x: x, lambda x: ~x], ids=["identity", "inverse"] ) @pytest.mark.parametrize("method", methods.keys()) def test_cummethods_bool(self, arg, func, method): # GH#6270 # checking Series method vs the ufunc applied to the values ser = func(pd.Series(arg)) ufunc = methods[method] exp_vals = ufunc(ser.values) expected = pd.Series(exp_vals) result = getattr(ser, method)() tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "method, expected", [ ["cumsum", pd.Series([0, 1, np.nan, 1], dtype=object)], ["cumprod", pd.Series([False, 0, np.nan, 0])], ["cummin", pd.Series([False, False, np.nan, False])], ["cummax", pd.Series([False, True, np.nan, True])], ], ) def test_cummethods_bool_in_object_dtype(self, method, expected): ser = pd.Series([False, True, np.nan, False]) result = getattr(ser, method)() tm.assert_series_equal(result, expected)