from datetime import ( datetime, timedelta, timezone, ) import numpy as np import pytest import pytz from pandas import ( Categorical, DataFrame, DatetimeIndex, NaT, Period, Series, Timedelta, Timestamp, date_range, isna, ) import pandas._testing as tm class TestSeriesFillNA: def test_fillna_nat(self): series = Series([0, 1, 2, NaT.value], dtype="M8[ns]") filled = series.fillna(method="pad") filled2 = series.fillna(value=series.values[2]) expected = series.copy() expected.values[3] = expected.values[2] tm.assert_series_equal(filled, expected) tm.assert_series_equal(filled2, expected) df = DataFrame({"A": series}) filled = df.fillna(method="pad") filled2 = df.fillna(value=series.values[2]) expected = DataFrame({"A": expected}) tm.assert_frame_equal(filled, expected) tm.assert_frame_equal(filled2, expected) series = Series([NaT.value, 0, 1, 2], dtype="M8[ns]") filled = series.fillna(method="bfill") filled2 = series.fillna(value=series[1]) expected = series.copy() expected[0] = expected[1] tm.assert_series_equal(filled, expected) tm.assert_series_equal(filled2, expected) df = DataFrame({"A": series}) filled = df.fillna(method="bfill") filled2 = df.fillna(value=series[1]) expected = DataFrame({"A": expected}) tm.assert_frame_equal(filled, expected) tm.assert_frame_equal(filled2, expected) def test_fillna_value_or_method(self, datetime_series): msg = "Cannot specify both 'value' and 'method'" with pytest.raises(ValueError, match=msg): datetime_series.fillna(value=0, method="ffill") def test_fillna(self): ts = Series([0.0, 1.0, 2.0, 3.0, 4.0], index=tm.makeDateIndex(5)) tm.assert_series_equal(ts, ts.fillna(method="ffill")) ts[2] = np.NaN exp = Series([0.0, 1.0, 1.0, 3.0, 4.0], index=ts.index) tm.assert_series_equal(ts.fillna(method="ffill"), exp) exp = Series([0.0, 1.0, 3.0, 3.0, 4.0], index=ts.index) tm.assert_series_equal(ts.fillna(method="backfill"), exp) exp = Series([0.0, 1.0, 5.0, 3.0, 4.0], index=ts.index) tm.assert_series_equal(ts.fillna(value=5), exp) msg = "Must specify a fill 'value' or 'method'" with pytest.raises(ValueError, match=msg): ts.fillna() def test_fillna_nonscalar(self): # GH#5703 s1 = Series([np.nan]) s2 = Series([1]) result = s1.fillna(s2) expected = Series([1.0]) tm.assert_series_equal(result, expected) result = s1.fillna({}) tm.assert_series_equal(result, s1) result = s1.fillna(Series((), dtype=object)) tm.assert_series_equal(result, s1) result = s2.fillna(s1) tm.assert_series_equal(result, s2) result = s1.fillna({0: 1}) tm.assert_series_equal(result, expected) result = s1.fillna({1: 1}) tm.assert_series_equal(result, Series([np.nan])) result = s1.fillna({0: 1, 1: 1}) tm.assert_series_equal(result, expected) result = s1.fillna(Series({0: 1, 1: 1})) tm.assert_series_equal(result, expected) result = s1.fillna(Series({0: 1, 1: 1}, index=[4, 5])) tm.assert_series_equal(result, s1) def test_fillna_aligns(self): s1 = Series([0, 1, 2], list("abc")) s2 = Series([0, np.nan, 2], list("bac")) result = s2.fillna(s1) expected = Series([0, 0, 2.0], list("bac")) tm.assert_series_equal(result, expected) def test_fillna_limit(self): ser = Series(np.nan, index=[0, 1, 2]) result = ser.fillna(999, limit=1) expected = Series([999, np.nan, np.nan], index=[0, 1, 2]) tm.assert_series_equal(result, expected) result = ser.fillna(999, limit=2) expected = Series([999, 999, np.nan], index=[0, 1, 2]) tm.assert_series_equal(result, expected) def test_fillna_dont_cast_strings(self): # GH#9043 # make sure a string representation of int/float values can be filled # correctly without raising errors or being converted vals = ["0", "1.5", "-0.3"] for val in vals: ser = Series([0, 1, np.nan, np.nan, 4], dtype="float64") result = ser.fillna(val) expected = Series([0, 1, val, val, 4], dtype="object") tm.assert_series_equal(result, expected) def test_fillna_consistency(self): # GH#16402 # fillna with a tz aware to a tz-naive, should result in object ser = Series([Timestamp("20130101"), NaT]) result = ser.fillna(Timestamp("20130101", tz="US/Eastern")) expected = Series( [Timestamp("20130101"), Timestamp("2013-01-01", tz="US/Eastern")], dtype="object", ) tm.assert_series_equal(result, expected) # where (we ignore the errors=) with tm.assert_produces_warning(FutureWarning, match="the 'errors' keyword"): result = ser.where( [True, False], Timestamp("20130101", tz="US/Eastern"), errors="ignore" ) tm.assert_series_equal(result, expected) with tm.assert_produces_warning(FutureWarning, match="the 'errors' keyword"): result = ser.where( [True, False], Timestamp("20130101", tz="US/Eastern"), errors="ignore" ) tm.assert_series_equal(result, expected) # with a non-datetime result = ser.fillna("foo") expected = Series([Timestamp("20130101"), "foo"]) tm.assert_series_equal(result, expected) # assignment ser2 = ser.copy() ser2[1] = "foo" tm.assert_series_equal(ser2, expected) def test_fillna_downcast(self): # GH#15277 # infer int64 from float64 ser = Series([1.0, np.nan]) result = ser.fillna(0, downcast="infer") expected = Series([1, 0]) tm.assert_series_equal(result, expected) # infer int64 from float64 when fillna value is a dict ser = Series([1.0, np.nan]) result = ser.fillna({1: 0}, downcast="infer") expected = Series([1, 0]) tm.assert_series_equal(result, expected) def test_fillna_downcast_infer_objects_to_numeric(self): # GH#44241 if we have object-dtype, 'downcast="infer"' should # _actually_ infer arr = np.arange(5).astype(object) arr[3] = np.nan ser = Series(arr) res = ser.fillna(3, downcast="infer") expected = Series(np.arange(5), dtype=np.int64) tm.assert_series_equal(res, expected) res = ser.ffill(downcast="infer") expected = Series([0, 1, 2, 2, 4], dtype=np.int64) tm.assert_series_equal(res, expected) res = ser.bfill(downcast="infer") expected = Series([0, 1, 2, 4, 4], dtype=np.int64) tm.assert_series_equal(res, expected) # with a non-round float present, we will downcast to float64 ser[2] = 2.5 expected = Series([0, 1, 2.5, 3, 4], dtype=np.float64) res = ser.fillna(3, downcast="infer") tm.assert_series_equal(res, expected) res = ser.ffill(downcast="infer") expected = Series([0, 1, 2.5, 2.5, 4], dtype=np.float64) tm.assert_series_equal(res, expected) res = ser.bfill(downcast="infer") expected = Series([0, 1, 2.5, 4, 4], dtype=np.float64) tm.assert_series_equal(res, expected) def test_timedelta_fillna(self, frame_or_series): # GH#3371 ser = Series( [ Timestamp("20130101"), Timestamp("20130101"), Timestamp("20130102"), Timestamp("20130103 9:01:01"), ] ) td = ser.diff() obj = frame_or_series(td) # reg fillna result = obj.fillna(Timedelta(seconds=0)) expected = Series( [ timedelta(0), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ] ) expected = frame_or_series(expected) tm.assert_equal(result, expected) # interpreted as seconds, no longer supported msg = "value should be a 'Timedelta', 'NaT', or array of those. Got 'int'" wmsg = "In a future version, this will cast to a common dtype" with pytest.raises(TypeError, match=msg): with tm.assert_produces_warning(FutureWarning, match=wmsg): # GH#45746 obj.fillna(1) result = obj.fillna(Timedelta(seconds=1)) expected = Series( [ timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ] ) expected = frame_or_series(expected) tm.assert_equal(result, expected) result = obj.fillna(timedelta(days=1, seconds=1)) expected = Series( [ timedelta(days=1, seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ] ) expected = frame_or_series(expected) tm.assert_equal(result, expected) result = obj.fillna(np.timedelta64(10**9)) expected = Series( [ timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ] ) expected = frame_or_series(expected) tm.assert_equal(result, expected) result = obj.fillna(NaT) expected = Series( [ NaT, timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ], dtype="m8[ns]", ) expected = frame_or_series(expected) tm.assert_equal(result, expected) # ffill td[2] = np.nan obj = frame_or_series(td) result = obj.ffill() expected = td.fillna(Timedelta(seconds=0)) expected[0] = np.nan expected = frame_or_series(expected) tm.assert_equal(result, expected) # bfill td[2] = np.nan obj = frame_or_series(td) result = obj.bfill() expected = td.fillna(Timedelta(seconds=0)) expected[2] = timedelta(days=1, seconds=9 * 3600 + 60 + 1) expected = frame_or_series(expected) tm.assert_equal(result, expected) def test_datetime64_fillna(self): ser = Series( [ Timestamp("20130101"), Timestamp("20130101"), Timestamp("20130102"), Timestamp("20130103 9:01:01"), ] ) ser[2] = np.nan # ffill result = ser.ffill() expected = Series( [ Timestamp("20130101"), Timestamp("20130101"), Timestamp("20130101"), Timestamp("20130103 9:01:01"), ] ) tm.assert_series_equal(result, expected) # bfill result = ser.bfill() expected = Series( [ Timestamp("20130101"), Timestamp("20130101"), Timestamp("20130103 9:01:01"), Timestamp("20130103 9:01:01"), ] ) tm.assert_series_equal(result, expected) def test_datetime64_fillna_backfill(self): # GH#6587 # make sure that we are treating as integer when filling msg = "containing strings is deprecated" with tm.assert_produces_warning(FutureWarning, match=msg): # this also tests inference of a datetime-like with NaT's ser = Series([NaT, NaT, "2013-08-05 15:30:00.000001"]) expected = Series( [ "2013-08-05 15:30:00.000001", "2013-08-05 15:30:00.000001", "2013-08-05 15:30:00.000001", ], dtype="M8[ns]", ) result = ser.fillna(method="backfill") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("tz", ["US/Eastern", "Asia/Tokyo"]) def test_datetime64_tz_fillna(self, tz): # DatetimeLikeBlock ser = Series( [ Timestamp("2011-01-01 10:00"), NaT, Timestamp("2011-01-03 10:00"), NaT, ] ) null_loc = Series([False, True, False, True]) result = ser.fillna(Timestamp("2011-01-02 10:00")) expected = Series( [ Timestamp("2011-01-01 10:00"), Timestamp("2011-01-02 10:00"), Timestamp("2011-01-03 10:00"), Timestamp("2011-01-02 10:00"), ] ) tm.assert_series_equal(expected, result) # check s is not changed tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna(Timestamp("2011-01-02 10:00", tz=tz)) expected = Series( [ Timestamp("2011-01-01 10:00"), Timestamp("2011-01-02 10:00", tz=tz), Timestamp("2011-01-03 10:00"), Timestamp("2011-01-02 10:00", tz=tz), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna("AAA") expected = Series( [ Timestamp("2011-01-01 10:00"), "AAA", Timestamp("2011-01-03 10:00"), "AAA", ], dtype=object, ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna( { 1: Timestamp("2011-01-02 10:00", tz=tz), 3: Timestamp("2011-01-04 10:00"), } ) expected = Series( [ Timestamp("2011-01-01 10:00"), Timestamp("2011-01-02 10:00", tz=tz), Timestamp("2011-01-03 10:00"), Timestamp("2011-01-04 10:00"), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna( {1: Timestamp("2011-01-02 10:00"), 3: Timestamp("2011-01-04 10:00")} ) expected = Series( [ Timestamp("2011-01-01 10:00"), Timestamp("2011-01-02 10:00"), Timestamp("2011-01-03 10:00"), Timestamp("2011-01-04 10:00"), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) # DatetimeTZBlock idx = DatetimeIndex(["2011-01-01 10:00", NaT, "2011-01-03 10:00", NaT], tz=tz) ser = Series(idx) assert ser.dtype == f"datetime64[ns, {tz}]" tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna(Timestamp("2011-01-02 10:00")) expected = Series( [ Timestamp("2011-01-01 10:00", tz=tz), Timestamp("2011-01-02 10:00"), Timestamp("2011-01-03 10:00", tz=tz), Timestamp("2011-01-02 10:00"), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna(Timestamp("2011-01-02 10:00", tz=tz)) idx = DatetimeIndex( [ "2011-01-01 10:00", "2011-01-02 10:00", "2011-01-03 10:00", "2011-01-02 10:00", ], tz=tz, ) expected = Series(idx) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna(Timestamp("2011-01-02 10:00", tz=tz).to_pydatetime()) idx = DatetimeIndex( [ "2011-01-01 10:00", "2011-01-02 10:00", "2011-01-03 10:00", "2011-01-02 10:00", ], tz=tz, ) expected = Series(idx) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna("AAA") expected = Series( [ Timestamp("2011-01-01 10:00", tz=tz), "AAA", Timestamp("2011-01-03 10:00", tz=tz), "AAA", ], dtype=object, ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna( { 1: Timestamp("2011-01-02 10:00", tz=tz), 3: Timestamp("2011-01-04 10:00"), } ) expected = Series( [ Timestamp("2011-01-01 10:00", tz=tz), Timestamp("2011-01-02 10:00", tz=tz), Timestamp("2011-01-03 10:00", tz=tz), Timestamp("2011-01-04 10:00"), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna( { 1: Timestamp("2011-01-02 10:00", tz=tz), 3: Timestamp("2011-01-04 10:00", tz=tz), } ) expected = Series( [ Timestamp("2011-01-01 10:00", tz=tz), Timestamp("2011-01-02 10:00", tz=tz), Timestamp("2011-01-03 10:00", tz=tz), Timestamp("2011-01-04 10:00", tz=tz), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) # filling with a naive/other zone, coerce to object result = ser.fillna(Timestamp("20130101")) expected = Series( [ Timestamp("2011-01-01 10:00", tz=tz), Timestamp("2013-01-01"), Timestamp("2011-01-03 10:00", tz=tz), Timestamp("2013-01-01"), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) with tm.assert_produces_warning(FutureWarning, match="mismatched timezone"): result = ser.fillna(Timestamp("20130101", tz="US/Pacific")) expected = Series( [ Timestamp("2011-01-01 10:00", tz=tz), Timestamp("2013-01-01", tz="US/Pacific"), Timestamp("2011-01-03 10:00", tz=tz), Timestamp("2013-01-01", tz="US/Pacific"), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) def test_fillna_dt64tz_with_method(self): # with timezone # GH#15855 ser = Series([Timestamp("2012-11-11 00:00:00+01:00"), NaT]) exp = Series( [ Timestamp("2012-11-11 00:00:00+01:00"), Timestamp("2012-11-11 00:00:00+01:00"), ] ) tm.assert_series_equal(ser.fillna(method="pad"), exp) ser = Series([NaT, Timestamp("2012-11-11 00:00:00+01:00")]) exp = Series( [ Timestamp("2012-11-11 00:00:00+01:00"), Timestamp("2012-11-11 00:00:00+01:00"), ] ) tm.assert_series_equal(ser.fillna(method="bfill"), exp) def test_fillna_pytimedelta(self): # GH#8209 ser = Series([np.nan, Timedelta("1 days")], index=["A", "B"]) result = ser.fillna(timedelta(1)) expected = Series(Timedelta("1 days"), index=["A", "B"]) tm.assert_series_equal(result, expected) def test_fillna_period(self): # GH#13737 ser = Series([Period("2011-01", freq="M"), Period("NaT", freq="M")]) res = ser.fillna(Period("2012-01", freq="M")) exp = Series([Period("2011-01", freq="M"), Period("2012-01", freq="M")]) tm.assert_series_equal(res, exp) assert res.dtype == "Period[M]" def test_fillna_dt64_timestamp(self, frame_or_series): ser = Series( [ Timestamp("20130101"), Timestamp("20130101"), Timestamp("20130102"), Timestamp("20130103 9:01:01"), ] ) ser[2] = np.nan obj = frame_or_series(ser) # reg fillna result = obj.fillna(Timestamp("20130104")) expected = Series( [ Timestamp("20130101"), Timestamp("20130101"), Timestamp("20130104"), Timestamp("20130103 9:01:01"), ] ) expected = frame_or_series(expected) tm.assert_equal(result, expected) result = obj.fillna(NaT) expected = obj tm.assert_equal(result, expected) def test_fillna_dt64_non_nao(self): # GH#27419 ser = Series([Timestamp("2010-01-01"), NaT, Timestamp("2000-01-01")]) val = np.datetime64("1975-04-05", "ms") result = ser.fillna(val) expected = Series( [Timestamp("2010-01-01"), Timestamp("1975-04-05"), Timestamp("2000-01-01")] ) tm.assert_series_equal(result, expected) def test_fillna_numeric_inplace(self): x = Series([np.nan, 1.0, np.nan, 3.0, np.nan], ["z", "a", "b", "c", "d"]) y = x.copy() return_value = y.fillna(value=0, inplace=True) assert return_value is None expected = x.fillna(value=0) tm.assert_series_equal(y, expected) # --------------------------------------------------------------- # CategoricalDtype @pytest.mark.parametrize( "fill_value, expected_output", [ ("a", ["a", "a", "b", "a", "a"]), ({1: "a", 3: "b", 4: "b"}, ["a", "a", "b", "b", "b"]), ({1: "a"}, ["a", "a", "b", np.nan, np.nan]), ({1: "a", 3: "b"}, ["a", "a", "b", "b", np.nan]), (Series("a"), ["a", np.nan, "b", np.nan, np.nan]), (Series("a", index=[1]), ["a", "a", "b", np.nan, np.nan]), (Series({1: "a", 3: "b"}), ["a", "a", "b", "b", np.nan]), (Series(["a", "b"], index=[3, 4]), ["a", np.nan, "b", "a", "b"]), ], ) def test_fillna_categorical(self, fill_value, expected_output): # GH#17033 # Test fillna for a Categorical series data = ["a", np.nan, "b", np.nan, np.nan] ser = Series(Categorical(data, categories=["a", "b"])) exp = Series(Categorical(expected_output, categories=["a", "b"])) result = ser.fillna(fill_value) tm.assert_series_equal(result, exp) @pytest.mark.parametrize( "fill_value, expected_output", [ (Series(["a", "b", "c", "d", "e"]), ["a", "b", "b", "d", "e"]), (Series(["b", "d", "a", "d", "a"]), ["a", "d", "b", "d", "a"]), ( Series( Categorical( ["b", "d", "a", "d", "a"], categories=["b", "c", "d", "e", "a"] ) ), ["a", "d", "b", "d", "a"], ), ], ) def test_fillna_categorical_with_new_categories(self, fill_value, expected_output): # GH#26215 data = ["a", np.nan, "b", np.nan, np.nan] ser = Series(Categorical(data, categories=["a", "b", "c", "d", "e"])) exp = Series(Categorical(expected_output, categories=["a", "b", "c", "d", "e"])) result = ser.fillna(fill_value) tm.assert_series_equal(result, exp) def test_fillna_categorical_raises(self): data = ["a", np.nan, "b", np.nan, np.nan] ser = Series(Categorical(data, categories=["a", "b"])) cat = ser._values msg = "Cannot setitem on a Categorical with a new category" with pytest.raises(TypeError, match=msg): ser.fillna("d") msg2 = "Length of 'value' does not match." with pytest.raises(ValueError, match=msg2): cat.fillna(Series("d")) with pytest.raises(TypeError, match=msg): ser.fillna({1: "d", 3: "a"}) msg = '"value" parameter must be a scalar or dict, but you passed a "list"' with pytest.raises(TypeError, match=msg): ser.fillna(["a", "b"]) msg = '"value" parameter must be a scalar or dict, but you passed a "tuple"' with pytest.raises(TypeError, match=msg): ser.fillna(("a", "b")) msg = ( '"value" parameter must be a scalar, dict ' 'or Series, but you passed a "DataFrame"' ) with pytest.raises(TypeError, match=msg): ser.fillna(DataFrame({1: ["a"], 3: ["b"]})) @pytest.mark.parametrize("dtype", [float, "float32", "float64"]) @pytest.mark.parametrize("fill_type", tm.ALL_REAL_NUMPY_DTYPES) @pytest.mark.parametrize("scalar", [True, False]) def test_fillna_float_casting(self, dtype, fill_type, scalar): # GH-43424 ser = Series([np.nan, 1.2], dtype=dtype) fill_values = Series([2, 2], dtype=fill_type) if scalar: fill_values = fill_values.dtype.type(2) result = ser.fillna(fill_values) expected = Series([2.0, 1.2], dtype=dtype) tm.assert_series_equal(result, expected) ser = Series([np.nan, 1.2], dtype=dtype) mask = ser.isna().to_numpy() ser[mask] = fill_values tm.assert_series_equal(ser, expected) ser = Series([np.nan, 1.2], dtype=dtype) ser.mask(mask, fill_values, inplace=True) tm.assert_series_equal(ser, expected) ser = Series([np.nan, 1.2], dtype=dtype) res = ser.where(~mask, fill_values) tm.assert_series_equal(res, expected) def test_fillna_f32_upcast_with_dict(self): # GH-43424 ser = Series([np.nan, 1.2], dtype=np.float32) result = ser.fillna({0: 1}) expected = Series([1.0, 1.2], dtype=np.float32) tm.assert_series_equal(result, expected) # --------------------------------------------------------------- # Invalid Usages def test_fillna_invalid_method(self, datetime_series): try: datetime_series.fillna(method="ffil") except ValueError as inst: assert "ffil" in str(inst) def test_fillna_listlike_invalid(self): ser = Series(np.random.randint(-100, 100, 50)) msg = '"value" parameter must be a scalar or dict, but you passed a "list"' with pytest.raises(TypeError, match=msg): ser.fillna([1, 2]) msg = '"value" parameter must be a scalar or dict, but you passed a "tuple"' with pytest.raises(TypeError, match=msg): ser.fillna((1, 2)) def test_fillna_method_and_limit_invalid(self): # related GH#9217, make sure limit is an int and greater than 0 ser = Series([1, 2, 3, None]) msg = "|".join( [ r"Cannot specify both 'value' and 'method'\.", "Limit must be greater than 0", "Limit must be an integer", ] ) for limit in [-1, 0, 1.0, 2.0]: for method in ["backfill", "bfill", "pad", "ffill", None]: with pytest.raises(ValueError, match=msg): ser.fillna(1, limit=limit, method=method) def test_fillna_datetime64_with_timezone_tzinfo(self): # https://github.com/pandas-dev/pandas/issues/38851 # different tzinfos representing UTC treated as equal ser = Series(date_range("2020", periods=3, tz="UTC")) expected = ser.copy() ser[1] = NaT result = ser.fillna(datetime(2020, 1, 2, tzinfo=timezone.utc)) tm.assert_series_equal(result, expected) # but we dont (yet) consider distinct tzinfos for non-UTC tz equivalent ts = Timestamp("2000-01-01", tz="US/Pacific") ser2 = Series(ser._values.tz_convert("dateutil/US/Pacific")) assert ser2.dtype.kind == "M" with tm.assert_produces_warning(FutureWarning, match="mismatched timezone"): result = ser2.fillna(ts) expected = Series([ser[0], ts, ser[2]], dtype=object) # TODO(2.0): once deprecation is enforced # expected = Series( # [ser2[0], ts.tz_convert(ser2.dtype.tz), ser2[2]], # dtype=ser2.dtype, # ) tm.assert_series_equal(result, expected) def test_fillna_pos_args_deprecation(self): # https://github.com/pandas-dev/pandas/issues/41485 srs = Series([1, 2, 3, np.nan], dtype=float) msg = ( r"In a future version of pandas all arguments of Series.fillna " r"except for the argument 'value' will be keyword-only" ) with tm.assert_produces_warning(FutureWarning, match=msg): result = srs.fillna(0, None, None) expected = Series([1, 2, 3, 0], dtype=float) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "input, input_fillna, expected_data, expected_categories", [ (["A", "B", None, "A"], "B", ["A", "B", "B", "A"], ["A", "B"]), (["A", "B", np.nan, "A"], "B", ["A", "B", "B", "A"], ["A", "B"]), ], ) def test_fillna_categorical_accept_same_type( self, input, input_fillna, expected_data, expected_categories ): # GH32414 cat = Categorical(input) ser = Series(cat).fillna(input_fillna) filled = cat.fillna(ser) result = cat.fillna(filled) expected = Categorical(expected_data, categories=expected_categories) tm.assert_categorical_equal(result, expected) class TestFillnaPad: def test_fillna_bug(self): ser = Series([np.nan, 1.0, np.nan, 3.0, np.nan], ["z", "a", "b", "c", "d"]) filled = ser.fillna(method="ffill") expected = Series([np.nan, 1.0, 1.0, 3.0, 3.0], ser.index) tm.assert_series_equal(filled, expected) filled = ser.fillna(method="bfill") expected = Series([1.0, 1.0, 3.0, 3.0, np.nan], ser.index) tm.assert_series_equal(filled, expected) def test_ffill(self): ts = Series([0.0, 1.0, 2.0, 3.0, 4.0], index=tm.makeDateIndex(5)) ts[2] = np.NaN tm.assert_series_equal(ts.ffill(), ts.fillna(method="ffill")) def test_ffill_pos_args_deprecation(self): # https://github.com/pandas-dev/pandas/issues/41485 ser = Series([1, 2, 3]) msg = ( r"In a future version of pandas all arguments of Series.ffill " r"will be keyword-only" ) with tm.assert_produces_warning(FutureWarning, match=msg): result = ser.ffill(0) expected = Series([1, 2, 3]) tm.assert_series_equal(result, expected) def test_ffill_mixed_dtypes_without_missing_data(self): # GH#14956 series = Series([datetime(2015, 1, 1, tzinfo=pytz.utc), 1]) result = series.ffill() tm.assert_series_equal(series, result) def test_bfill(self): ts = Series([0.0, 1.0, 2.0, 3.0, 4.0], index=tm.makeDateIndex(5)) ts[2] = np.NaN tm.assert_series_equal(ts.bfill(), ts.fillna(method="bfill")) def test_bfill_pos_args_deprecation(self): # https://github.com/pandas-dev/pandas/issues/41485 ser = Series([1, 2, 3]) msg = ( r"In a future version of pandas all arguments of Series.bfill " r"will be keyword-only" ) with tm.assert_produces_warning(FutureWarning, match=msg): result = ser.bfill(0) expected = Series([1, 2, 3]) tm.assert_series_equal(result, expected) def test_pad_nan(self): x = Series( [np.nan, 1.0, np.nan, 3.0, np.nan], ["z", "a", "b", "c", "d"], dtype=float ) return_value = x.fillna(method="pad", inplace=True) assert return_value is None expected = Series( [np.nan, 1.0, 1.0, 3.0, 3.0], ["z", "a", "b", "c", "d"], dtype=float ) tm.assert_series_equal(x[1:], expected[1:]) assert np.isnan(x[0]), np.isnan(expected[0]) def test_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index) result = result.fillna(method="pad", limit=5) expected = s[:2].reindex(index).fillna(method="pad") expected[-3:] = np.nan tm.assert_series_equal(result, expected) result = s[-2:].reindex(index) result = result.fillna(method="bfill", limit=5) expected = s[-2:].reindex(index).fillna(method="backfill") expected[:3] = np.nan tm.assert_series_equal(result, expected) def test_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index, method="pad", limit=5) expected = s[:2].reindex(index).fillna(method="pad") expected[-3:] = np.nan tm.assert_series_equal(result, expected) result = s[-2:].reindex(index, method="backfill", limit=5) expected = s[-2:].reindex(index).fillna(method="backfill") expected[:3] = np.nan tm.assert_series_equal(result, expected) def test_fillna_int(self): ser = Series(np.random.randint(-100, 100, 50)) return_value = ser.fillna(method="ffill", inplace=True) assert return_value is None tm.assert_series_equal(ser.fillna(method="ffill", inplace=False), ser) def test_datetime64tz_fillna_round_issue(self): # GH#14872 data = Series( [NaT, NaT, datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc)] ) filled = data.fillna(method="bfill") expected = Series( [ datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc), datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc), datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc), ] ) tm.assert_series_equal(filled, expected)