import pytest from pandas import ( Index, Series, ) import pandas._testing as tm @pytest.mark.parametrize( "data, index, drop_labels, axis, expected_data, expected_index", [ # Unique Index ([1, 2], ["one", "two"], ["two"], 0, [1], ["one"]), ([1, 2], ["one", "two"], ["two"], "rows", [1], ["one"]), ([1, 1, 2], ["one", "two", "one"], ["two"], 0, [1, 2], ["one", "one"]), # GH 5248 Non-Unique Index ([1, 1, 2], ["one", "two", "one"], "two", 0, [1, 2], ["one", "one"]), ([1, 1, 2], ["one", "two", "one"], ["one"], 0, [1], ["two"]), ([1, 1, 2], ["one", "two", "one"], "one", 0, [1], ["two"]), ], ) def test_drop_unique_and_non_unique_index( data, index, axis, drop_labels, expected_data, expected_index ): ser = Series(data=data, index=index) result = ser.drop(drop_labels, axis=axis) expected = Series(data=expected_data, index=expected_index) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data, index, drop_labels, axis, error_type, error_desc", [ # single string/tuple-like (range(3), list("abc"), "bc", 0, KeyError, "not found in axis"), # bad axis (range(3), list("abc"), ("a",), 0, KeyError, "not found in axis"), (range(3), list("abc"), "one", "columns", ValueError, "No axis named columns"), ], ) def test_drop_exception_raised(data, index, drop_labels, axis, error_type, error_desc): ser = Series(data, index=index) with pytest.raises(error_type, match=error_desc): ser.drop(drop_labels, axis=axis) def test_drop_with_ignore_errors(): # errors='ignore' ser = Series(range(3), index=list("abc")) result = ser.drop("bc", errors="ignore") tm.assert_series_equal(result, ser) result = ser.drop(["a", "d"], errors="ignore") expected = ser.iloc[1:] tm.assert_series_equal(result, expected) # GH 8522 ser = Series([2, 3], index=[True, False]) assert not ser.index.is_object() assert ser.index.dtype == bool result = ser.drop(True) expected = Series([3], index=[False]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("index", [[1, 2, 3], [1, 1, 3]]) @pytest.mark.parametrize("drop_labels", [[], [1], [3]]) def test_drop_empty_list(index, drop_labels): # GH 21494 expected_index = [i for i in index if i not in drop_labels] series = Series(index=index, dtype=object).drop(drop_labels) expected = Series(index=expected_index, dtype=object) tm.assert_series_equal(series, expected) @pytest.mark.parametrize( "data, index, drop_labels", [ (None, [1, 2, 3], [1, 4]), (None, [1, 2, 2], [1, 4]), ([2, 3], [0, 1], [False, True]), ], ) def test_drop_non_empty_list(data, index, drop_labels): # GH 21494 and GH 16877 dtype = object if data is None else None ser = Series(data=data, index=index, dtype=dtype) with pytest.raises(KeyError, match="not found in axis"): ser.drop(drop_labels) def test_drop_pos_args_deprecation(): # https://github.com/pandas-dev/pandas/issues/41485 ser = Series([1, 2, 3]) msg = ( r"In a future version of pandas all arguments of Series\.drop " r"except for the argument 'labels' will be keyword-only" ) with tm.assert_produces_warning(FutureWarning, match=msg): result = ser.drop(1, 0) expected = Series([1, 3], index=[0, 2]) tm.assert_series_equal(result, expected) def test_drop_index_ea_dtype(any_numeric_ea_dtype): # GH#45860 df = Series(100, index=Index([1, 2, 2], dtype=any_numeric_ea_dtype)) idx = Index([df.index[1]]) result = df.drop(idx) expected = Series(100, index=Index([1], dtype=any_numeric_ea_dtype)) tm.assert_series_equal(result, expected)