import numpy as np import pytest import pandas as pd from pandas import ( Categorical, MultiIndex, Series, ) import pandas._testing as tm class TestSeriesCount: def test_count_level_series(self): index = MultiIndex( levels=[["foo", "bar", "baz"], ["one", "two", "three", "four"]], codes=[[0, 0, 0, 2, 2], [2, 0, 1, 1, 2]], ) ser = Series(np.random.randn(len(index)), index=index) with tm.assert_produces_warning(FutureWarning): result = ser.count(level=0) expected = ser.groupby(level=0).count() tm.assert_series_equal( result.astype("f8"), expected.reindex(result.index).fillna(0) ) with tm.assert_produces_warning(FutureWarning): result = ser.count(level=1) expected = ser.groupby(level=1).count() tm.assert_series_equal( result.astype("f8"), expected.reindex(result.index).fillna(0) ) def test_count_multiindex(self, series_with_multilevel_index): ser = series_with_multilevel_index series = ser.copy() series.index.names = ["a", "b"] with tm.assert_produces_warning(FutureWarning): result = series.count(level="b") with tm.assert_produces_warning(FutureWarning): expect = ser.count(level=1).rename_axis("b") tm.assert_series_equal(result, expect) with tm.assert_produces_warning(FutureWarning): result = series.count(level="a") with tm.assert_produces_warning(FutureWarning): expect = ser.count(level=0).rename_axis("a") tm.assert_series_equal(result, expect) msg = "Level x not found" with pytest.raises(KeyError, match=msg): with tm.assert_produces_warning(FutureWarning): series.count("x") def test_count_level_without_multiindex(self): ser = Series(range(3)) msg = "Series.count level is only valid with a MultiIndex" with pytest.raises(ValueError, match=msg): with tm.assert_produces_warning(FutureWarning): ser.count(level=1) def test_count(self, datetime_series): assert datetime_series.count() == len(datetime_series) datetime_series[::2] = np.NaN assert datetime_series.count() == np.isfinite(datetime_series).sum() mi = MultiIndex.from_arrays([list("aabbcc"), [1, 2, 2, np.nan, 1, 2]]) ts = Series(np.arange(len(mi)), index=mi) with tm.assert_produces_warning(FutureWarning): left = ts.count(level=1) right = Series([2, 3, 1], index=[1, 2, np.nan]) tm.assert_series_equal(left, right) ts.iloc[[0, 3, 5]] = np.nan with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(ts.count(level=1), right - 1) # GH#29478 with pd.option_context("use_inf_as_na", True): assert Series([pd.Timestamp("1990/1/1")]).count() == 1 def test_count_categorical(self): ser = Series( Categorical( [np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True ) ) result = ser.count() assert result == 2