import numpy as np import pytest from pandas.core.dtypes.common import is_integer import pandas as pd from pandas import ( Series, Timestamp, date_range, isna, ) import pandas._testing as tm def test_where_unsafe_int(any_signed_int_numpy_dtype): s = Series(np.arange(10), dtype=any_signed_int_numpy_dtype) mask = s < 5 s[mask] = range(2, 7) expected = Series( list(range(2, 7)) + list(range(5, 10)), dtype=any_signed_int_numpy_dtype, ) tm.assert_series_equal(s, expected) def test_where_unsafe_float(float_numpy_dtype): s = Series(np.arange(10), dtype=float_numpy_dtype) mask = s < 5 s[mask] = range(2, 7) data = list(range(2, 7)) + list(range(5, 10)) expected = Series(data, dtype=float_numpy_dtype) tm.assert_series_equal(s, expected) @pytest.mark.parametrize( "dtype,expected_dtype", [ (np.int8, np.float64), (np.int16, np.float64), (np.int32, np.float64), (np.int64, np.float64), (np.float32, np.float32), (np.float64, np.float64), ], ) def test_where_unsafe_upcast(dtype, expected_dtype): # see gh-9743 s = Series(np.arange(10), dtype=dtype) values = [2.5, 3.5, 4.5, 5.5, 6.5] mask = s < 5 expected = Series(values + list(range(5, 10)), dtype=expected_dtype) s[mask] = values tm.assert_series_equal(s, expected) def test_where_unsafe(): # see gh-9731 s = Series(np.arange(10), dtype="int64") values = [2.5, 3.5, 4.5, 5.5] mask = s > 5 expected = Series(list(range(6)) + values, dtype="float64") s[mask] = values tm.assert_series_equal(s, expected) # see gh-3235 s = Series(np.arange(10), dtype="int64") mask = s < 5 s[mask] = range(2, 7) expected = Series(list(range(2, 7)) + list(range(5, 10)), dtype="int64") tm.assert_series_equal(s, expected) assert s.dtype == expected.dtype s = Series(np.arange(10), dtype="int64") mask = s > 5 s[mask] = [0] * 4 expected = Series([0, 1, 2, 3, 4, 5] + [0] * 4, dtype="int64") tm.assert_series_equal(s, expected) s = Series(np.arange(10)) mask = s > 5 msg = "cannot set using a list-like indexer with a different length than the value" with pytest.raises(ValueError, match=msg): s[mask] = [5, 4, 3, 2, 1] with pytest.raises(ValueError, match=msg): s[mask] = [0] * 5 # dtype changes s = Series([1, 2, 3, 4]) result = s.where(s > 2, np.nan) expected = Series([np.nan, np.nan, 3, 4]) tm.assert_series_equal(result, expected) # GH 4667 # setting with None changes dtype s = Series(range(10)).astype(float) s[8] = None result = s[8] assert isna(result) s = Series(range(10)).astype(float) s[s > 8] = None result = s[isna(s)] expected = Series(np.nan, index=[9]) tm.assert_series_equal(result, expected) def test_where(): s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(cond).dropna() rs2 = s[cond] tm.assert_series_equal(rs, rs2) rs = s.where(cond, -s) tm.assert_series_equal(rs, s.abs()) rs = s.where(cond) assert s.shape == rs.shape assert rs is not s # test alignment cond = Series([True, False, False, True, False], index=s.index) s2 = -(s.abs()) expected = s2[cond].reindex(s2.index[:3]).reindex(s2.index) rs = s2.where(cond[:3]) tm.assert_series_equal(rs, expected) expected = s2.abs() expected.iloc[0] = s2[0] rs = s2.where(cond[:3], -s2) tm.assert_series_equal(rs, expected) def test_where_error(): s = Series(np.random.randn(5)) cond = s > 0 msg = "Array conditional must be same shape as self" with pytest.raises(ValueError, match=msg): s.where(1) with pytest.raises(ValueError, match=msg): s.where(cond[:3].values, -s) # GH 2745 s = Series([1, 2]) s[[True, False]] = [0, 1] expected = Series([0, 2]) tm.assert_series_equal(s, expected) # failures msg = "cannot set using a list-like indexer with a different length than the value" with pytest.raises(ValueError, match=msg): s[[True, False]] = [0, 2, 3] with pytest.raises(ValueError, match=msg): s[[True, False]] = [] @pytest.mark.parametrize("klass", [list, tuple, np.array, Series]) def test_where_array_like(klass): # see gh-15414 s = Series([1, 2, 3]) cond = [False, True, True] expected = Series([np.nan, 2, 3]) result = s.where(klass(cond)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "cond", [ [1, 0, 1], Series([2, 5, 7]), ["True", "False", "True"], [Timestamp("2017-01-01"), pd.NaT, Timestamp("2017-01-02")], ], ) def test_where_invalid_input(cond): # see gh-15414: only boolean arrays accepted s = Series([1, 2, 3]) msg = "Boolean array expected for the condition" with pytest.raises(ValueError, match=msg): s.where(cond) msg = "Array conditional must be same shape as self" with pytest.raises(ValueError, match=msg): s.where([True]) def test_where_ndframe_align(): msg = "Array conditional must be same shape as self" s = Series([1, 2, 3]) cond = [True] with pytest.raises(ValueError, match=msg): s.where(cond) expected = Series([1, np.nan, np.nan]) out = s.where(Series(cond)) tm.assert_series_equal(out, expected) cond = np.array([False, True, False, True]) with pytest.raises(ValueError, match=msg): s.where(cond) expected = Series([np.nan, 2, np.nan]) out = s.where(Series(cond)) tm.assert_series_equal(out, expected) def test_where_setitem_invalid(): # GH 2702 # make sure correct exceptions are raised on invalid list assignment msg = ( lambda x: f"cannot set using a {x} indexer with a " "different length than the value" ) # slice s = Series(list("abc")) with pytest.raises(ValueError, match=msg("slice")): s[0:3] = list(range(27)) s[0:3] = list(range(3)) expected = Series([0, 1, 2]) tm.assert_series_equal(s.astype(np.int64), expected) # slice with step s = Series(list("abcdef")) with pytest.raises(ValueError, match=msg("slice")): s[0:4:2] = list(range(27)) s = Series(list("abcdef")) s[0:4:2] = list(range(2)) expected = Series([0, "b", 1, "d", "e", "f"]) tm.assert_series_equal(s, expected) # neg slices s = Series(list("abcdef")) with pytest.raises(ValueError, match=msg("slice")): s[:-1] = list(range(27)) s[-3:-1] = list(range(2)) expected = Series(["a", "b", "c", 0, 1, "f"]) tm.assert_series_equal(s, expected) # list s = Series(list("abc")) with pytest.raises(ValueError, match=msg("list-like")): s[[0, 1, 2]] = list(range(27)) s = Series(list("abc")) with pytest.raises(ValueError, match=msg("list-like")): s[[0, 1, 2]] = list(range(2)) # scalar s = Series(list("abc")) s[0] = list(range(10)) expected = Series([list(range(10)), "b", "c"]) tm.assert_series_equal(s, expected) @pytest.mark.parametrize("size", range(2, 6)) @pytest.mark.parametrize( "mask", [[True, False, False, False, False], [True, False], [False]] ) @pytest.mark.parametrize( "item", [2.0, np.nan, np.finfo(float).max, np.finfo(float).min] ) # Test numpy arrays, lists and tuples as the input to be # broadcast @pytest.mark.parametrize( "box", [lambda x: np.array([x]), lambda x: [x], lambda x: (x,)] ) def test_broadcast(size, mask, item, box): # GH#8801, GH#4195 selection = np.resize(mask, size) data = np.arange(size, dtype=float) # Construct the expected series by taking the source # data or item based on the selection expected = Series( [item if use_item else data[i] for i, use_item in enumerate(selection)] ) s = Series(data) s[selection] = item tm.assert_series_equal(s, expected) s = Series(data) result = s.where(~selection, box(item)) tm.assert_series_equal(result, expected) s = Series(data) result = s.mask(selection, box(item)) tm.assert_series_equal(result, expected) def test_where_inplace(): s = Series(np.random.randn(5)) cond = s > 0 rs = s.copy() rs.where(cond, inplace=True) tm.assert_series_equal(rs.dropna(), s[cond]) tm.assert_series_equal(rs, s.where(cond)) rs = s.copy() rs.where(cond, -s, inplace=True) tm.assert_series_equal(rs, s.where(cond, -s)) def test_where_dups(): # GH 4550 # where crashes with dups in index s1 = Series(list(range(3))) s2 = Series(list(range(3))) comb = pd.concat([s1, s2]) result = comb.where(comb < 2) expected = Series([0, 1, np.nan, 0, 1, np.nan], index=[0, 1, 2, 0, 1, 2]) tm.assert_series_equal(result, expected) # GH 4548 # inplace updating not working with dups comb[comb < 1] = 5 expected = Series([5, 1, 2, 5, 1, 2], index=[0, 1, 2, 0, 1, 2]) tm.assert_series_equal(comb, expected) comb[comb < 2] += 10 expected = Series([5, 11, 2, 5, 11, 2], index=[0, 1, 2, 0, 1, 2]) tm.assert_series_equal(comb, expected) def test_where_numeric_with_string(): # GH 9280 s = Series([1, 2, 3]) w = s.where(s > 1, "X") assert not is_integer(w[0]) assert is_integer(w[1]) assert is_integer(w[2]) assert isinstance(w[0], str) assert w.dtype == "object" w = s.where(s > 1, ["X", "Y", "Z"]) assert not is_integer(w[0]) assert is_integer(w[1]) assert is_integer(w[2]) assert isinstance(w[0], str) assert w.dtype == "object" w = s.where(s > 1, np.array(["X", "Y", "Z"])) assert not is_integer(w[0]) assert is_integer(w[1]) assert is_integer(w[2]) assert isinstance(w[0], str) assert w.dtype == "object" @pytest.mark.parametrize("dtype", ["timedelta64[ns]", "datetime64[ns]"]) def test_where_datetimelike_coerce(dtype): ser = Series([1, 2], dtype=dtype) expected = Series([10, 10]) mask = np.array([False, False]) rs = ser.where(mask, [10, 10]) tm.assert_series_equal(rs, expected) rs = ser.where(mask, 10) tm.assert_series_equal(rs, expected) rs = ser.where(mask, 10.0) tm.assert_series_equal(rs, expected) rs = ser.where(mask, [10.0, 10.0]) tm.assert_series_equal(rs, expected) rs = ser.where(mask, [10.0, np.nan]) expected = Series([10, None], dtype="object") tm.assert_series_equal(rs, expected) def test_where_datetimetz(): # GH 15701 timestamps = ["2016-12-31 12:00:04+00:00", "2016-12-31 12:00:04.010000+00:00"] ser = Series([Timestamp(t) for t in timestamps], dtype="datetime64[ns, UTC]") rs = ser.where(Series([False, True])) expected = Series([pd.NaT, ser[1]], dtype="datetime64[ns, UTC]") tm.assert_series_equal(rs, expected) def test_where_sparse(): # GH#17198 make sure we dont get an AttributeError for sp_index ser = Series(pd.arrays.SparseArray([1, 2])) result = ser.where(ser >= 2, 0) expected = Series(pd.arrays.SparseArray([0, 2])) tm.assert_series_equal(result, expected) def test_where_empty_series_and_empty_cond_having_non_bool_dtypes(): # https://github.com/pandas-dev/pandas/issues/34592 ser = Series([], dtype=float) result = ser.where([]) tm.assert_series_equal(result, ser) def test_where_categorical(frame_or_series): # https://github.com/pandas-dev/pandas/issues/18888 exp = frame_or_series( pd.Categorical(["A", "A", "B", "B", np.nan], categories=["A", "B", "C"]), dtype="category", ) df = frame_or_series(["A", "A", "B", "B", "C"], dtype="category") res = df.where(df != "C") tm.assert_equal(exp, res) def test_where_datetimelike_categorical(tz_naive_fixture): # GH#37682 tz = tz_naive_fixture dr = date_range("2001-01-01", periods=3, tz=tz)._with_freq(None) lvals = pd.DatetimeIndex([dr[0], dr[1], pd.NaT]) rvals = pd.Categorical([dr[0], pd.NaT, dr[2]]) mask = np.array([True, True, False]) # DatetimeIndex.where res = lvals.where(mask, rvals) tm.assert_index_equal(res, dr) # DatetimeArray.where res = lvals._data._where(mask, rvals) tm.assert_datetime_array_equal(res, dr._data) # Series.where res = Series(lvals).where(mask, rvals) tm.assert_series_equal(res, Series(dr)) # DataFrame.where res = pd.DataFrame(lvals).where(mask[:, None], pd.DataFrame(rvals)) tm.assert_frame_equal(res, pd.DataFrame(dr))