import os import numpy as np import pytest import pandas as pd from pandas import ( Categorical, DatetimeIndex, Interval, IntervalIndex, NaT, Series, TimedeltaIndex, Timestamp, cut, date_range, isna, qcut, timedelta_range, ) import pandas._testing as tm from pandas.api.types import CategoricalDtype as CDT from pandas.tseries.offsets import ( Day, Nano, ) def test_qcut(): arr = np.random.randn(1000) # We store the bins as Index that have been # rounded to comparisons are a bit tricky. labels, _ = qcut(arr, 4, retbins=True) ex_bins = np.quantile(arr, [0, 0.25, 0.5, 0.75, 1.0]) result = labels.categories.left.values assert np.allclose(result, ex_bins[:-1], atol=1e-2) result = labels.categories.right.values assert np.allclose(result, ex_bins[1:], atol=1e-2) ex_levels = cut(arr, ex_bins, include_lowest=True) tm.assert_categorical_equal(labels, ex_levels) def test_qcut_bounds(): arr = np.random.randn(1000) factor = qcut(arr, 10, labels=False) assert len(np.unique(factor)) == 10 def test_qcut_specify_quantiles(): arr = np.random.randn(100) factor = qcut(arr, [0, 0.25, 0.5, 0.75, 1.0]) expected = qcut(arr, 4) tm.assert_categorical_equal(factor, expected) def test_qcut_all_bins_same(): with pytest.raises(ValueError, match="edges.*unique"): qcut([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 3) def test_qcut_include_lowest(): values = np.arange(10) ii = qcut(values, 4) ex_levels = IntervalIndex( [ Interval(-0.001, 2.25), Interval(2.25, 4.5), Interval(4.5, 6.75), Interval(6.75, 9), ] ) tm.assert_index_equal(ii.categories, ex_levels) def test_qcut_nas(): arr = np.random.randn(100) arr[:20] = np.nan result = qcut(arr, 4) assert isna(result[:20]).all() def test_qcut_index(): result = qcut([0, 2], 2) intervals = [Interval(-0.001, 1), Interval(1, 2)] expected = Categorical(intervals, ordered=True) tm.assert_categorical_equal(result, expected) def test_qcut_binning_issues(datapath): # see gh-1978, gh-1979 cut_file = datapath(os.path.join("reshape", "data", "cut_data.csv")) arr = np.loadtxt(cut_file) result = qcut(arr, 20) starts = [] ends = [] for lev in np.unique(result): s = lev.left e = lev.right assert s != e starts.append(float(s)) ends.append(float(e)) for (sp, sn), (ep, en) in zip( zip(starts[:-1], starts[1:]), zip(ends[:-1], ends[1:]) ): assert sp < sn assert ep < en assert ep <= sn def test_qcut_return_intervals(): ser = Series([0, 1, 2, 3, 4, 5, 6, 7, 8]) res = qcut(ser, [0, 0.333, 0.666, 1]) exp_levels = np.array( [Interval(-0.001, 2.664), Interval(2.664, 5.328), Interval(5.328, 8)] ) exp = Series(exp_levels.take([0, 0, 0, 1, 1, 1, 2, 2, 2])).astype(CDT(ordered=True)) tm.assert_series_equal(res, exp) @pytest.mark.parametrize("labels", ["foo", 1, True]) def test_qcut_incorrect_labels(labels): # GH 13318 values = range(5) msg = "Bin labels must either be False, None or passed in as a list-like argument" with pytest.raises(ValueError, match=msg): qcut(values, 4, labels=labels) @pytest.mark.parametrize("labels", [["a", "b", "c"], list(range(3))]) def test_qcut_wrong_length_labels(labels): # GH 13318 values = range(10) msg = "Bin labels must be one fewer than the number of bin edges" with pytest.raises(ValueError, match=msg): qcut(values, 4, labels=labels) @pytest.mark.parametrize( "labels, expected", [ (["a", "b", "c"], Categorical(["a", "b", "c"], ordered=True)), (list(range(3)), Categorical([0, 1, 2], ordered=True)), ], ) def test_qcut_list_like_labels(labels, expected): # GH 13318 values = range(3) result = qcut(values, 3, labels=labels) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize( "kwargs,msg", [ ({"duplicates": "drop"}, None), ({}, "Bin edges must be unique"), ({"duplicates": "raise"}, "Bin edges must be unique"), ({"duplicates": "foo"}, "invalid value for 'duplicates' parameter"), ], ) def test_qcut_duplicates_bin(kwargs, msg): # see gh-7751 values = [0, 0, 0, 0, 1, 2, 3] if msg is not None: with pytest.raises(ValueError, match=msg): qcut(values, 3, **kwargs) else: result = qcut(values, 3, **kwargs) expected = IntervalIndex([Interval(-0.001, 1), Interval(1, 3)]) tm.assert_index_equal(result.categories, expected) @pytest.mark.parametrize( "data,start,end", [(9.0, 8.999, 9.0), (0.0, -0.001, 0.0), (-9.0, -9.001, -9.0)] ) @pytest.mark.parametrize("length", [1, 2]) @pytest.mark.parametrize("labels", [None, False]) def test_single_quantile(data, start, end, length, labels): # see gh-15431 ser = Series([data] * length) result = qcut(ser, 1, labels=labels) if labels is None: intervals = IntervalIndex([Interval(start, end)] * length, closed="right") expected = Series(intervals).astype(CDT(ordered=True)) else: expected = Series([0] * length, dtype=np.intp) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "ser", [ Series(DatetimeIndex(["20180101", NaT, "20180103"])), Series(TimedeltaIndex(["0 days", NaT, "2 days"])), ], ids=lambda x: str(x.dtype), ) def test_qcut_nat(ser): # see gh-19768 intervals = IntervalIndex.from_tuples( [(ser[0] - Nano(), ser[2] - Day()), np.nan, (ser[2] - Day(), ser[2])] ) expected = Series(Categorical(intervals, ordered=True)) result = qcut(ser, 2) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("bins", [3, np.linspace(0, 1, 4)]) def test_datetime_tz_qcut(bins): # see gh-19872 tz = "US/Eastern" ser = Series(date_range("20130101", periods=3, tz=tz)) result = qcut(ser, bins) expected = Series( IntervalIndex( [ Interval( Timestamp("2012-12-31 23:59:59.999999999", tz=tz), Timestamp("2013-01-01 16:00:00", tz=tz), ), Interval( Timestamp("2013-01-01 16:00:00", tz=tz), Timestamp("2013-01-02 08:00:00", tz=tz), ), Interval( Timestamp("2013-01-02 08:00:00", tz=tz), Timestamp("2013-01-03 00:00:00", tz=tz), ), ] ) ).astype(CDT(ordered=True)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "arg,expected_bins", [ [ timedelta_range("1day", periods=3), TimedeltaIndex(["1 days", "2 days", "3 days"]), ], [ date_range("20180101", periods=3), DatetimeIndex(["2018-01-01", "2018-01-02", "2018-01-03"]), ], ], ) def test_date_like_qcut_bins(arg, expected_bins): # see gh-19891 ser = Series(arg) result, result_bins = qcut(ser, 2, retbins=True) tm.assert_index_equal(result_bins, expected_bins) @pytest.mark.parametrize("bins", [6, 7]) @pytest.mark.parametrize( "box, compare", [ (Series, tm.assert_series_equal), (np.array, tm.assert_categorical_equal), (list, tm.assert_equal), ], ) def test_qcut_bool_coercion_to_int(bins, box, compare): # issue 20303 data_expected = box([0, 1, 1, 0, 1] * 10) data_result = box([False, True, True, False, True] * 10) expected = qcut(data_expected, bins, duplicates="drop") result = qcut(data_result, bins, duplicates="drop") compare(result, expected) @pytest.mark.parametrize("q", [2, 5, 10]) def test_qcut_nullable_integer(q, any_numeric_ea_dtype): arr = pd.array(np.arange(100), dtype=any_numeric_ea_dtype) arr[::2] = pd.NA result = qcut(arr, q) expected = qcut(arr.astype(float), q) tm.assert_categorical_equal(result, expected)