import numpy as np import pytest from pandas import ( DataFrame, Series, from_dummies, get_dummies, ) import pandas._testing as tm @pytest.fixture def dummies_basic(): return DataFrame( { "col1_a": [1, 0, 1], "col1_b": [0, 1, 0], "col2_a": [0, 1, 0], "col2_b": [1, 0, 0], "col2_c": [0, 0, 1], }, ) @pytest.fixture def dummies_with_unassigned(): return DataFrame( { "col1_a": [1, 0, 0], "col1_b": [0, 1, 0], "col2_a": [0, 1, 0], "col2_b": [0, 0, 0], "col2_c": [0, 0, 1], }, ) def test_error_wrong_data_type(): dummies = [0, 1, 0] with pytest.raises( TypeError, match=r"Expected 'data' to be a 'DataFrame'; Received 'data' of type: list", ): from_dummies(dummies) def test_error_no_prefix_contains_unassigned(): dummies = DataFrame({"a": [1, 0, 0], "b": [0, 1, 0]}) with pytest.raises( ValueError, match=( r"Dummy DataFrame contains unassigned value\(s\); " r"First instance in row: 2" ), ): from_dummies(dummies) def test_error_no_prefix_wrong_default_category_type(): dummies = DataFrame({"a": [1, 0, 1], "b": [0, 1, 1]}) with pytest.raises( TypeError, match=( r"Expected 'default_category' to be of type 'None', 'Hashable', or 'dict'; " r"Received 'default_category' of type: list" ), ): from_dummies(dummies, default_category=["c", "d"]) def test_error_no_prefix_multi_assignment(): dummies = DataFrame({"a": [1, 0, 1], "b": [0, 1, 1]}) with pytest.raises( ValueError, match=( r"Dummy DataFrame contains multi-assignment\(s\); " r"First instance in row: 2" ), ): from_dummies(dummies) def test_error_no_prefix_contains_nan(): dummies = DataFrame({"a": [1, 0, 0], "b": [0, 1, np.nan]}) with pytest.raises( ValueError, match=r"Dummy DataFrame contains NA value in column: 'b'" ): from_dummies(dummies) def test_error_contains_non_dummies(): dummies = DataFrame( {"a": [1, 6, 3, 1], "b": [0, 1, 0, 2], "c": ["c1", "c2", "c3", "c4"]} ) with pytest.raises( TypeError, match=r"Passed DataFrame contains non-dummy data", ): from_dummies(dummies) def test_error_with_prefix_multiple_seperators(): dummies = DataFrame( { "col1_a": [1, 0, 1], "col1_b": [0, 1, 0], "col2-a": [0, 1, 0], "col2-b": [1, 0, 1], }, ) with pytest.raises( ValueError, match=(r"Separator not specified for column: col2-a"), ): from_dummies(dummies, sep="_") def test_error_with_prefix_sep_wrong_type(dummies_basic): with pytest.raises( TypeError, match=( r"Expected 'sep' to be of type 'str' or 'None'; " r"Received 'sep' of type: list" ), ): from_dummies(dummies_basic, sep=["_"]) def test_error_with_prefix_contains_unassigned(dummies_with_unassigned): with pytest.raises( ValueError, match=( r"Dummy DataFrame contains unassigned value\(s\); " r"First instance in row: 2" ), ): from_dummies(dummies_with_unassigned, sep="_") def test_error_with_prefix_default_category_wrong_type(dummies_with_unassigned): with pytest.raises( TypeError, match=( r"Expected 'default_category' to be of type 'None', 'Hashable', or 'dict'; " r"Received 'default_category' of type: list" ), ): from_dummies(dummies_with_unassigned, sep="_", default_category=["x", "y"]) def test_error_with_prefix_default_category_dict_not_complete( dummies_with_unassigned, ): with pytest.raises( ValueError, match=( r"Length of 'default_category' \(1\) did not match " r"the length of the columns being encoded \(2\)" ), ): from_dummies(dummies_with_unassigned, sep="_", default_category={"col1": "x"}) def test_error_with_prefix_contains_nan(dummies_basic): dummies_basic.loc[2, "col2_c"] = np.nan with pytest.raises( ValueError, match=r"Dummy DataFrame contains NA value in column: 'col2_c'" ): from_dummies(dummies_basic, sep="_") def test_error_with_prefix_contains_non_dummies(dummies_basic): dummies_basic.loc[2, "col2_c"] = "str" with pytest.raises(TypeError, match=r"Passed DataFrame contains non-dummy data"): from_dummies(dummies_basic, sep="_") def test_error_with_prefix_double_assignment(): dummies = DataFrame( { "col1_a": [1, 0, 1], "col1_b": [1, 1, 0], "col2_a": [0, 1, 0], "col2_b": [1, 0, 0], "col2_c": [0, 0, 1], }, ) with pytest.raises( ValueError, match=( r"Dummy DataFrame contains multi-assignment\(s\); " r"First instance in row: 0" ), ): from_dummies(dummies, sep="_") def test_roundtrip_series_to_dataframe(): categories = Series(["a", "b", "c", "a"]) dummies = get_dummies(categories) result = from_dummies(dummies) expected = DataFrame({"": ["a", "b", "c", "a"]}) tm.assert_frame_equal(result, expected) def test_roundtrip_single_column_dataframe(): categories = DataFrame({"": ["a", "b", "c", "a"]}) dummies = get_dummies(categories) result = from_dummies(dummies, sep="_") expected = categories tm.assert_frame_equal(result, expected) def test_roundtrip_with_prefixes(): categories = DataFrame({"col1": ["a", "b", "a"], "col2": ["b", "a", "c"]}) dummies = get_dummies(categories) result = from_dummies(dummies, sep="_") expected = categories tm.assert_frame_equal(result, expected) def test_no_prefix_string_cats_basic(): dummies = DataFrame({"a": [1, 0, 0, 1], "b": [0, 1, 0, 0], "c": [0, 0, 1, 0]}) expected = DataFrame({"": ["a", "b", "c", "a"]}) result = from_dummies(dummies) tm.assert_frame_equal(result, expected) def test_no_prefix_string_cats_basic_bool_values(): dummies = DataFrame( { "a": [True, False, False, True], "b": [False, True, False, False], "c": [False, False, True, False], } ) expected = DataFrame({"": ["a", "b", "c", "a"]}) result = from_dummies(dummies) tm.assert_frame_equal(result, expected) def test_no_prefix_string_cats_basic_mixed_bool_values(): dummies = DataFrame( {"a": [1, 0, 0, 1], "b": [False, True, False, False], "c": [0, 0, 1, 0]} ) expected = DataFrame({"": ["a", "b", "c", "a"]}) result = from_dummies(dummies) tm.assert_frame_equal(result, expected) def test_no_prefix_int_cats_basic(): dummies = DataFrame( {1: [1, 0, 0, 0], 25: [0, 1, 0, 0], 2: [0, 0, 1, 0], 5: [0, 0, 0, 1]} ) expected = DataFrame({"": [1, 25, 2, 5]}, dtype="object") result = from_dummies(dummies) tm.assert_frame_equal(result, expected) def test_no_prefix_float_cats_basic(): dummies = DataFrame( {1.0: [1, 0, 0, 0], 25.0: [0, 1, 0, 0], 2.5: [0, 0, 1, 0], 5.84: [0, 0, 0, 1]} ) expected = DataFrame({"": [1.0, 25.0, 2.5, 5.84]}, dtype="object") result = from_dummies(dummies) tm.assert_frame_equal(result, expected) def test_no_prefix_mixed_cats_basic(): dummies = DataFrame( { 1.23: [1, 0, 0, 0, 0], "c": [0, 1, 0, 0, 0], 2: [0, 0, 1, 0, 0], False: [0, 0, 0, 1, 0], None: [0, 0, 0, 0, 1], } ) expected = DataFrame({"": [1.23, "c", 2, False, None]}, dtype="object") result = from_dummies(dummies) tm.assert_frame_equal(result, expected) def test_no_prefix_string_cats_contains_get_dummies_NaN_column(): dummies = DataFrame({"a": [1, 0, 0], "b": [0, 1, 0], "NaN": [0, 0, 1]}) expected = DataFrame({"": ["a", "b", "NaN"]}) result = from_dummies(dummies) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "default_category, expected", [ pytest.param( "c", DataFrame({"": ["a", "b", "c"]}), id="default_category is a str", ), pytest.param( 1, DataFrame({"": ["a", "b", 1]}), id="default_category is a int", ), pytest.param( 1.25, DataFrame({"": ["a", "b", 1.25]}), id="default_category is a float", ), pytest.param( 0, DataFrame({"": ["a", "b", 0]}), id="default_category is a 0", ), pytest.param( False, DataFrame({"": ["a", "b", False]}), id="default_category is a bool", ), pytest.param( (1, 2), DataFrame({"": ["a", "b", (1, 2)]}), id="default_category is a tuple", ), ], ) def test_no_prefix_string_cats_default_category(default_category, expected): dummies = DataFrame({"a": [1, 0, 0], "b": [0, 1, 0]}) result = from_dummies(dummies, default_category=default_category) tm.assert_frame_equal(result, expected) def test_with_prefix_basic(dummies_basic): expected = DataFrame({"col1": ["a", "b", "a"], "col2": ["b", "a", "c"]}) result = from_dummies(dummies_basic, sep="_") tm.assert_frame_equal(result, expected) def test_with_prefix_contains_get_dummies_NaN_column(): dummies = DataFrame( { "col1_a": [1, 0, 0], "col1_b": [0, 1, 0], "col1_NaN": [0, 0, 1], "col2_a": [0, 1, 0], "col2_b": [0, 0, 0], "col2_c": [0, 0, 1], "col2_NaN": [1, 0, 0], }, ) expected = DataFrame({"col1": ["a", "b", "NaN"], "col2": ["NaN", "a", "c"]}) result = from_dummies(dummies, sep="_") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "default_category, expected", [ pytest.param( "x", DataFrame({"col1": ["a", "b", "x"], "col2": ["x", "a", "c"]}), id="default_category is a str", ), pytest.param( 0, DataFrame({"col1": ["a", "b", 0], "col2": [0, "a", "c"]}), id="default_category is a 0", ), pytest.param( False, DataFrame({"col1": ["a", "b", False], "col2": [False, "a", "c"]}), id="default_category is a False", ), pytest.param( {"col2": 1, "col1": 2.5}, DataFrame({"col1": ["a", "b", 2.5], "col2": [1, "a", "c"]}), id="default_category is a dict with int and float values", ), pytest.param( {"col2": None, "col1": False}, DataFrame({"col1": ["a", "b", False], "col2": [None, "a", "c"]}), id="default_category is a dict with bool and None values", ), pytest.param( {"col2": (1, 2), "col1": [1.25, False]}, DataFrame({"col1": ["a", "b", [1.25, False]], "col2": [(1, 2), "a", "c"]}), id="default_category is a dict with list and tuple values", ), ], ) def test_with_prefix_default_category( dummies_with_unassigned, default_category, expected ): result = from_dummies( dummies_with_unassigned, sep="_", default_category=default_category ) tm.assert_frame_equal(result, expected)