import numpy as np import pytest from pandas.errors import UnsortedIndexError import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, ) import pandas._testing as tm from pandas.tests.indexing.common import _mklbl class TestMultiIndexSlicers: def test_per_axis_per_level_getitem(self): # GH6134 # example test case ix = MultiIndex.from_product( [_mklbl("A", 5), _mklbl("B", 7), _mklbl("C", 4), _mklbl("D", 2)] ) df = DataFrame(np.arange(len(ix.to_numpy())), index=ix) result = df.loc[(slice("A1", "A3"), slice(None), ["C1", "C3"]), :] expected = df.loc[ [ ( a, b, c, d, ) for a, b, c, d in df.index.values if (a == "A1" or a == "A2" or a == "A3") and (c == "C1" or c == "C3") ] ] tm.assert_frame_equal(result, expected) expected = df.loc[ [ ( a, b, c, d, ) for a, b, c, d in df.index.values if (a == "A1" or a == "A2" or a == "A3") and (c == "C1" or c == "C2" or c == "C3") ] ] result = df.loc[(slice("A1", "A3"), slice(None), slice("C1", "C3")), :] tm.assert_frame_equal(result, expected) # test multi-index slicing with per axis and per index controls index = MultiIndex.from_tuples( [("A", 1), ("A", 2), ("A", 3), ("B", 1)], names=["one", "two"] ) columns = MultiIndex.from_tuples( [("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")], names=["lvl0", "lvl1"], ) df = DataFrame( np.arange(16, dtype="int64").reshape(4, 4), index=index, columns=columns ) df = df.sort_index(axis=0).sort_index(axis=1) # identity result = df.loc[(slice(None), slice(None)), :] tm.assert_frame_equal(result, df) result = df.loc[(slice(None), slice(None)), (slice(None), slice(None))] tm.assert_frame_equal(result, df) result = df.loc[:, (slice(None), slice(None))] tm.assert_frame_equal(result, df) # index result = df.loc[(slice(None), [1]), :] expected = df.iloc[[0, 3]] tm.assert_frame_equal(result, expected) result = df.loc[(slice(None), 1), :] expected = df.iloc[[0, 3]] tm.assert_frame_equal(result, expected) # columns result = df.loc[:, (slice(None), ["foo"])] expected = df.iloc[:, [1, 3]] tm.assert_frame_equal(result, expected) # both result = df.loc[(slice(None), 1), (slice(None), ["foo"])] expected = df.iloc[[0, 3], [1, 3]] tm.assert_frame_equal(result, expected) result = df.loc["A", "a"] expected = DataFrame( {"bar": [1, 5, 9], "foo": [0, 4, 8]}, index=Index([1, 2, 3], name="two"), columns=Index(["bar", "foo"], name="lvl1"), ) tm.assert_frame_equal(result, expected) result = df.loc[(slice(None), [1, 2]), :] expected = df.iloc[[0, 1, 3]] tm.assert_frame_equal(result, expected) # multi-level series s = Series(np.arange(len(ix.to_numpy())), index=ix) result = s.loc["A1":"A3", :, ["C1", "C3"]] expected = s.loc[ [ ( a, b, c, d, ) for a, b, c, d in s.index.values if (a == "A1" or a == "A2" or a == "A3") and (c == "C1" or c == "C3") ] ] tm.assert_series_equal(result, expected) # boolean indexers result = df.loc[(slice(None), df.loc[:, ("a", "bar")] > 5), :] expected = df.iloc[[2, 3]] tm.assert_frame_equal(result, expected) msg = ( "cannot index with a boolean indexer " "that is not the same length as the index" ) with pytest.raises(ValueError, match=msg): df.loc[(slice(None), np.array([True, False])), :] with pytest.raises(KeyError, match=r"\[1\] not in index"): # slice(None) is on the index, [1] is on the columns, but 1 is # not in the columns, so we raise # This used to treat [1] as positional GH#16396 df.loc[slice(None), [1]] # not lexsorted assert df.index._lexsort_depth == 2 df = df.sort_index(level=1, axis=0) assert df.index._lexsort_depth == 0 msg = ( "MultiIndex slicing requires the index to be " r"lexsorted: slicing on levels \[1\], lexsort depth 0" ) with pytest.raises(UnsortedIndexError, match=msg): df.loc[(slice(None), slice("bar")), :] # GH 16734: not sorted, but no real slicing result = df.loc[(slice(None), df.loc[:, ("a", "bar")] > 5), :] tm.assert_frame_equal(result, df.iloc[[1, 3], :]) def test_multiindex_slicers_non_unique(self): # GH 7106 # non-unique mi index support df = ( DataFrame( { "A": ["foo", "foo", "foo", "foo"], "B": ["a", "a", "a", "a"], "C": [1, 2, 1, 3], "D": [1, 2, 3, 4], } ) .set_index(["A", "B", "C"]) .sort_index() ) assert not df.index.is_unique expected = ( DataFrame({"A": ["foo", "foo"], "B": ["a", "a"], "C": [1, 1], "D": [1, 3]}) .set_index(["A", "B", "C"]) .sort_index() ) result = df.loc[(slice(None), slice(None), 1), :] tm.assert_frame_equal(result, expected) # this is equivalent of an xs expression result = df.xs(1, level=2, drop_level=False) tm.assert_frame_equal(result, expected) df = ( DataFrame( { "A": ["foo", "foo", "foo", "foo"], "B": ["a", "a", "a", "a"], "C": [1, 2, 1, 2], "D": [1, 2, 3, 4], } ) .set_index(["A", "B", "C"]) .sort_index() ) assert not df.index.is_unique expected = ( DataFrame({"A": ["foo", "foo"], "B": ["a", "a"], "C": [1, 1], "D": [1, 3]}) .set_index(["A", "B", "C"]) .sort_index() ) result = df.loc[(slice(None), slice(None), 1), :] assert not result.index.is_unique tm.assert_frame_equal(result, expected) # GH12896 # numpy-implementation dependent bug ints = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, 13, 14, 14, 16, 17, 18, 19, 200000, 200000, ] n = len(ints) idx = MultiIndex.from_arrays([["a"] * n, ints]) result = Series([1] * n, index=idx) result = result.sort_index() result = result.loc[(slice(None), slice(100000))] expected = Series([1] * (n - 2), index=idx[:-2]).sort_index() tm.assert_series_equal(result, expected) def test_multiindex_slicers_datetimelike(self): # GH 7429 # buggy/inconsistent behavior when slicing with datetime-like import datetime dates = [ datetime.datetime(2012, 1, 1, 12, 12, 12) + datetime.timedelta(days=i) for i in range(6) ] freq = [1, 2] index = MultiIndex.from_product([dates, freq], names=["date", "frequency"]) df = DataFrame( np.arange(6 * 2 * 4, dtype="int64").reshape(-1, 4), index=index, columns=list("ABCD"), ) # multi-axis slicing idx = pd.IndexSlice expected = df.iloc[[0, 2, 4], [0, 1]] result = df.loc[ ( slice( Timestamp("2012-01-01 12:12:12"), Timestamp("2012-01-03 12:12:12") ), slice(1, 1), ), slice("A", "B"), ] tm.assert_frame_equal(result, expected) result = df.loc[ ( idx[ Timestamp("2012-01-01 12:12:12") : Timestamp("2012-01-03 12:12:12") ], idx[1:1], ), slice("A", "B"), ] tm.assert_frame_equal(result, expected) result = df.loc[ ( slice( Timestamp("2012-01-01 12:12:12"), Timestamp("2012-01-03 12:12:12") ), 1, ), slice("A", "B"), ] tm.assert_frame_equal(result, expected) # with strings result = df.loc[ (slice("2012-01-01 12:12:12", "2012-01-03 12:12:12"), slice(1, 1)), slice("A", "B"), ] tm.assert_frame_equal(result, expected) result = df.loc[ (idx["2012-01-01 12:12:12":"2012-01-03 12:12:12"], 1), idx["A", "B"] ] tm.assert_frame_equal(result, expected) def test_multiindex_slicers_edges(self): # GH 8132 # various edge cases df = DataFrame( { "A": ["A0"] * 5 + ["A1"] * 5 + ["A2"] * 5, "B": ["B0", "B0", "B1", "B1", "B2"] * 3, "DATE": [ "2013-06-11", "2013-07-02", "2013-07-09", "2013-07-30", "2013-08-06", "2013-06-11", "2013-07-02", "2013-07-09", "2013-07-30", "2013-08-06", "2013-09-03", "2013-10-01", "2013-07-09", "2013-08-06", "2013-09-03", ], "VALUES": [22, 35, 14, 9, 4, 40, 18, 4, 2, 5, 1, 2, 3, 4, 2], } ) df["DATE"] = pd.to_datetime(df["DATE"]) df1 = df.set_index(["A", "B", "DATE"]) df1 = df1.sort_index() # A1 - Get all values under "A0" and "A1" result = df1.loc[(slice("A1")), :] expected = df1.iloc[0:10] tm.assert_frame_equal(result, expected) # A2 - Get all values from the start to "A2" result = df1.loc[(slice("A2")), :] expected = df1 tm.assert_frame_equal(result, expected) # A3 - Get all values under "B1" or "B2" result = df1.loc[(slice(None), slice("B1", "B2")), :] expected = df1.iloc[[2, 3, 4, 7, 8, 9, 12, 13, 14]] tm.assert_frame_equal(result, expected) # A4 - Get all values between 2013-07-02 and 2013-07-09 result = df1.loc[(slice(None), slice(None), slice("20130702", "20130709")), :] expected = df1.iloc[[1, 2, 6, 7, 12]] tm.assert_frame_equal(result, expected) # B1 - Get all values in B0 that are also under A0, A1 and A2 result = df1.loc[(slice("A2"), slice("B0")), :] expected = df1.iloc[[0, 1, 5, 6, 10, 11]] tm.assert_frame_equal(result, expected) # B2 - Get all values in B0, B1 and B2 (similar to what #2 is doing for # the As) result = df1.loc[(slice(None), slice("B2")), :] expected = df1 tm.assert_frame_equal(result, expected) # B3 - Get all values from B1 to B2 and up to 2013-08-06 result = df1.loc[(slice(None), slice("B1", "B2"), slice("2013-08-06")), :] expected = df1.iloc[[2, 3, 4, 7, 8, 9, 12, 13]] tm.assert_frame_equal(result, expected) # B4 - Same as A4 but the start of the date slice is not a key. # shows indexing on a partial selection slice result = df1.loc[(slice(None), slice(None), slice("20130701", "20130709")), :] expected = df1.iloc[[1, 2, 6, 7, 12]] tm.assert_frame_equal(result, expected) def test_per_axis_per_level_doc_examples(self): # test index maker idx = pd.IndexSlice # from indexing.rst / advanced index = MultiIndex.from_product( [_mklbl("A", 4), _mklbl("B", 2), _mklbl("C", 4), _mklbl("D", 2)] ) columns = MultiIndex.from_tuples( [("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")], names=["lvl0", "lvl1"], ) df = DataFrame( np.arange(len(index) * len(columns), dtype="int64").reshape( (len(index), len(columns)) ), index=index, columns=columns, ) result = df.loc[(slice("A1", "A3"), slice(None), ["C1", "C3"]), :] expected = df.loc[ [ ( a, b, c, d, ) for a, b, c, d in df.index.values if (a == "A1" or a == "A2" or a == "A3") and (c == "C1" or c == "C3") ] ] tm.assert_frame_equal(result, expected) result = df.loc[idx["A1":"A3", :, ["C1", "C3"]], :] tm.assert_frame_equal(result, expected) result = df.loc[(slice(None), slice(None), ["C1", "C3"]), :] expected = df.loc[ [ ( a, b, c, d, ) for a, b, c, d in df.index.values if (c == "C1" or c == "C3") ] ] tm.assert_frame_equal(result, expected) result = df.loc[idx[:, :, ["C1", "C3"]], :] tm.assert_frame_equal(result, expected) # not sorted msg = ( "MultiIndex slicing requires the index to be lexsorted: " r"slicing on levels \[1\], lexsort depth 1" ) with pytest.raises(UnsortedIndexError, match=msg): df.loc["A1", ("a", slice("foo"))] # GH 16734: not sorted, but no real slicing tm.assert_frame_equal( df.loc["A1", (slice(None), "foo")], df.loc["A1"].iloc[:, [0, 2]] ) df = df.sort_index(axis=1) # slicing df.loc["A1", (slice(None), "foo")] df.loc[(slice(None), slice(None), ["C1", "C3"]), (slice(None), "foo")] # setitem df.loc(axis=0)[:, :, ["C1", "C3"]] = -10 def test_loc_axis_arguments(self): index = MultiIndex.from_product( [_mklbl("A", 4), _mklbl("B", 2), _mklbl("C", 4), _mklbl("D", 2)] ) columns = MultiIndex.from_tuples( [("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")], names=["lvl0", "lvl1"], ) df = ( DataFrame( np.arange(len(index) * len(columns), dtype="int64").reshape( (len(index), len(columns)) ), index=index, columns=columns, ) .sort_index() .sort_index(axis=1) ) # axis 0 result = df.loc(axis=0)["A1":"A3", :, ["C1", "C3"]] expected = df.loc[ [ ( a, b, c, d, ) for a, b, c, d in df.index.values if (a == "A1" or a == "A2" or a == "A3") and (c == "C1" or c == "C3") ] ] tm.assert_frame_equal(result, expected) result = df.loc(axis="index")[:, :, ["C1", "C3"]] expected = df.loc[ [ ( a, b, c, d, ) for a, b, c, d in df.index.values if (c == "C1" or c == "C3") ] ] tm.assert_frame_equal(result, expected) # axis 1 result = df.loc(axis=1)[:, "foo"] expected = df.loc[:, (slice(None), "foo")] tm.assert_frame_equal(result, expected) result = df.loc(axis="columns")[:, "foo"] expected = df.loc[:, (slice(None), "foo")] tm.assert_frame_equal(result, expected) # invalid axis for i in [-1, 2, "foo"]: msg = f"No axis named {i} for object type DataFrame" with pytest.raises(ValueError, match=msg): df.loc(axis=i)[:, :, ["C1", "C3"]] def test_loc_axis_single_level_multi_col_indexing_multiindex_col_df(self): # GH29519 df = DataFrame( np.arange(27).reshape(3, 9), columns=MultiIndex.from_product([["a1", "a2", "a3"], ["b1", "b2", "b3"]]), ) result = df.loc(axis=1)["a1":"a2"] expected = df.iloc[:, :-3] tm.assert_frame_equal(result, expected) def test_loc_axis_single_level_single_col_indexing_multiindex_col_df(self): # GH29519 df = DataFrame( np.arange(27).reshape(3, 9), columns=MultiIndex.from_product([["a1", "a2", "a3"], ["b1", "b2", "b3"]]), ) result = df.loc(axis=1)["a1"] expected = df.iloc[:, :3] expected.columns = ["b1", "b2", "b3"] tm.assert_frame_equal(result, expected) def test_loc_ax_single_level_indexer_simple_df(self): # GH29519 # test single level indexing on single index column data frame df = DataFrame(np.arange(9).reshape(3, 3), columns=["a", "b", "c"]) result = df.loc(axis=1)["a"] expected = Series(np.array([0, 3, 6]), name="a") tm.assert_series_equal(result, expected) def test_per_axis_per_level_setitem(self): # test index maker idx = pd.IndexSlice # test multi-index slicing with per axis and per index controls index = MultiIndex.from_tuples( [("A", 1), ("A", 2), ("A", 3), ("B", 1)], names=["one", "two"] ) columns = MultiIndex.from_tuples( [("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")], names=["lvl0", "lvl1"], ) df_orig = DataFrame( np.arange(16, dtype="int64").reshape(4, 4), index=index, columns=columns ) df_orig = df_orig.sort_index(axis=0).sort_index(axis=1) # identity df = df_orig.copy() df.loc[(slice(None), slice(None)), :] = 100 expected = df_orig.copy() expected.iloc[:, :] = 100 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc(axis=0)[:, :] = 100 expected = df_orig.copy() expected.iloc[:, :] = 100 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[(slice(None), slice(None)), (slice(None), slice(None))] = 100 expected = df_orig.copy() expected.iloc[:, :] = 100 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[:, (slice(None), slice(None))] = 100 expected = df_orig.copy() expected.iloc[:, :] = 100 tm.assert_frame_equal(df, expected) # index df = df_orig.copy() df.loc[(slice(None), [1]), :] = 100 expected = df_orig.copy() expected.iloc[[0, 3]] = 100 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[(slice(None), 1), :] = 100 expected = df_orig.copy() expected.iloc[[0, 3]] = 100 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc(axis=0)[:, 1] = 100 expected = df_orig.copy() expected.iloc[[0, 3]] = 100 tm.assert_frame_equal(df, expected) # columns df = df_orig.copy() df.loc[:, (slice(None), ["foo"])] = 100 expected = df_orig.copy() expected.iloc[:, [1, 3]] = 100 tm.assert_frame_equal(df, expected) # both df = df_orig.copy() df.loc[(slice(None), 1), (slice(None), ["foo"])] = 100 expected = df_orig.copy() expected.iloc[[0, 3], [1, 3]] = 100 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[idx[:, 1], idx[:, ["foo"]]] = 100 expected = df_orig.copy() expected.iloc[[0, 3], [1, 3]] = 100 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc["A", "a"] = 100 expected = df_orig.copy() expected.iloc[0:3, 0:2] = 100 tm.assert_frame_equal(df, expected) # setting with a list-like df = df_orig.copy() df.loc[(slice(None), 1), (slice(None), ["foo"])] = np.array( [[100, 100], [100, 100]], dtype="int64" ) expected = df_orig.copy() expected.iloc[[0, 3], [1, 3]] = 100 tm.assert_frame_equal(df, expected) # not enough values df = df_orig.copy() msg = "setting an array element with a sequence." with pytest.raises(ValueError, match=msg): df.loc[(slice(None), 1), (slice(None), ["foo"])] = np.array( [[100], [100, 100]], dtype="int64" ) msg = "Must have equal len keys and value when setting with an iterable" with pytest.raises(ValueError, match=msg): df.loc[(slice(None), 1), (slice(None), ["foo"])] = np.array( [100, 100, 100, 100], dtype="int64" ) # with an alignable rhs df = df_orig.copy() df.loc[(slice(None), 1), (slice(None), ["foo"])] = ( df.loc[(slice(None), 1), (slice(None), ["foo"])] * 5 ) expected = df_orig.copy() expected.iloc[[0, 3], [1, 3]] = expected.iloc[[0, 3], [1, 3]] * 5 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[(slice(None), 1), (slice(None), ["foo"])] *= df.loc[ (slice(None), 1), (slice(None), ["foo"]) ] expected = df_orig.copy() expected.iloc[[0, 3], [1, 3]] *= expected.iloc[[0, 3], [1, 3]] tm.assert_frame_equal(df, expected) rhs = df_orig.loc[(slice(None), 1), (slice(None), ["foo"])].copy() rhs.loc[:, ("c", "bah")] = 10 df = df_orig.copy() df.loc[(slice(None), 1), (slice(None), ["foo"])] *= rhs expected = df_orig.copy() expected.iloc[[0, 3], [1, 3]] *= expected.iloc[[0, 3], [1, 3]] tm.assert_frame_equal(df, expected) def test_multiindex_label_slicing_with_negative_step(self): ser = Series( np.arange(20), MultiIndex.from_product([list("abcde"), np.arange(4)]) ) SLC = pd.IndexSlice tm.assert_indexing_slices_equivalent(ser, SLC[::-1], SLC[::-1]) tm.assert_indexing_slices_equivalent(ser, SLC["d"::-1], SLC[15::-1]) tm.assert_indexing_slices_equivalent(ser, SLC[("d",)::-1], SLC[15::-1]) tm.assert_indexing_slices_equivalent(ser, SLC[:"d":-1], SLC[:11:-1]) tm.assert_indexing_slices_equivalent(ser, SLC[:("d",):-1], SLC[:11:-1]) tm.assert_indexing_slices_equivalent(ser, SLC["d":"b":-1], SLC[15:3:-1]) tm.assert_indexing_slices_equivalent(ser, SLC[("d",):"b":-1], SLC[15:3:-1]) tm.assert_indexing_slices_equivalent(ser, SLC["d":("b",):-1], SLC[15:3:-1]) tm.assert_indexing_slices_equivalent(ser, SLC[("d",):("b",):-1], SLC[15:3:-1]) tm.assert_indexing_slices_equivalent(ser, SLC["b":"d":-1], SLC[:0]) tm.assert_indexing_slices_equivalent(ser, SLC[("c", 2)::-1], SLC[10::-1]) tm.assert_indexing_slices_equivalent(ser, SLC[:("c", 2):-1], SLC[:9:-1]) tm.assert_indexing_slices_equivalent( ser, SLC[("e", 0):("c", 2):-1], SLC[16:9:-1] ) def test_multiindex_slice_first_level(self): # GH 12697 freq = ["a", "b", "c", "d"] idx = MultiIndex.from_product([freq, np.arange(500)]) df = DataFrame(list(range(2000)), index=idx, columns=["Test"]) df_slice = df.loc[pd.IndexSlice[:, 30:70], :] result = df_slice.loc["a"] expected = DataFrame(list(range(30, 71)), columns=["Test"], index=range(30, 71)) tm.assert_frame_equal(result, expected) result = df_slice.loc["d"] expected = DataFrame( list(range(1530, 1571)), columns=["Test"], index=range(30, 71) ) tm.assert_frame_equal(result, expected) def test_int_series_slicing(self, multiindex_year_month_day_dataframe_random_data): ymd = multiindex_year_month_day_dataframe_random_data s = ymd["A"] result = s[5:] expected = s.reindex(s.index[5:]) tm.assert_series_equal(result, expected) exp = ymd["A"].copy() s[5:] = 0 exp.values[5:] = 0 tm.assert_numpy_array_equal(s.values, exp.values) result = ymd[5:] expected = ymd.reindex(s.index[5:]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "dtype, loc, iloc", [ # dtype = int, step = -1 ("int", slice(None, None, -1), slice(None, None, -1)), ("int", slice(3, None, -1), slice(3, None, -1)), ("int", slice(None, 1, -1), slice(None, 0, -1)), ("int", slice(3, 1, -1), slice(3, 0, -1)), # dtype = int, step = -2 ("int", slice(None, None, -2), slice(None, None, -2)), ("int", slice(3, None, -2), slice(3, None, -2)), ("int", slice(None, 1, -2), slice(None, 0, -2)), ("int", slice(3, 1, -2), slice(3, 0, -2)), # dtype = str, step = -1 ("str", slice(None, None, -1), slice(None, None, -1)), ("str", slice("d", None, -1), slice(3, None, -1)), ("str", slice(None, "b", -1), slice(None, 0, -1)), ("str", slice("d", "b", -1), slice(3, 0, -1)), # dtype = str, step = -2 ("str", slice(None, None, -2), slice(None, None, -2)), ("str", slice("d", None, -2), slice(3, None, -2)), ("str", slice(None, "b", -2), slice(None, 0, -2)), ("str", slice("d", "b", -2), slice(3, 0, -2)), ], ) def test_loc_slice_negative_stepsize(self, dtype, loc, iloc): # GH#38071 labels = { "str": list("abcde"), "int": range(5), }[dtype] mi = MultiIndex.from_arrays([labels] * 2) df = DataFrame(1.0, index=mi, columns=["A"]) SLC = pd.IndexSlice expected = df.iloc[iloc, :] result_get_loc = df.loc[SLC[loc], :] result_get_locs_level_0 = df.loc[SLC[loc, :], :] result_get_locs_level_1 = df.loc[SLC[:, loc], :] tm.assert_frame_equal(result_get_loc, expected) tm.assert_frame_equal(result_get_locs_level_0, expected) tm.assert_frame_equal(result_get_locs_level_1, expected)