import numpy as np import pytest from pandas import ( DataFrame, Index, MultiIndex, Series, ) import pandas._testing as tm from pandas.core.indexing import IndexingError # ---------------------------------------------------------------------------- # test indexing of Series with multi-level Index # ---------------------------------------------------------------------------- @pytest.mark.parametrize( "access_method", [lambda s, x: s[:, x], lambda s, x: s.loc[:, x], lambda s, x: s.xs(x, level=1)], ) @pytest.mark.parametrize( "level1_value, expected", [(0, Series([1], index=[0])), (1, Series([2, 3], index=[1, 2]))], ) def test_series_getitem_multiindex(access_method, level1_value, expected): # GH 6018 # series regression getitem with a multi-index mi = MultiIndex.from_tuples([(0, 0), (1, 1), (2, 1)], names=["A", "B"]) ser = Series([1, 2, 3], index=mi) expected.index.name = "A" result = access_method(ser, level1_value) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("level0_value", ["D", "A"]) def test_series_getitem_duplicates_multiindex(level0_value): # GH 5725 the 'A' happens to be a valid Timestamp so the doesn't raise # the appropriate error, only in PY3 of course! index = MultiIndex( levels=[[level0_value, "B", "C"], [0, 26, 27, 37, 57, 67, 75, 82]], codes=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], names=["tag", "day"], ) arr = np.random.randn(len(index), 1) df = DataFrame(arr, index=index, columns=["val"]) # confirm indexing on missing value raises KeyError if level0_value != "A": with pytest.raises(KeyError, match=r"^'A'$"): df.val["A"] with pytest.raises(KeyError, match=r"^'X'$"): df.val["X"] result = df.val[level0_value] expected = Series( arr.ravel()[0:3], name="val", index=Index([26, 37, 57], name="day") ) tm.assert_series_equal(result, expected) def test_series_getitem(multiindex_year_month_day_dataframe_random_data, indexer_sl): s = multiindex_year_month_day_dataframe_random_data["A"] expected = s.reindex(s.index[42:65]) expected.index = expected.index.droplevel(0).droplevel(0) result = indexer_sl(s)[2000, 3] tm.assert_series_equal(result, expected) def test_series_getitem_returns_scalar( multiindex_year_month_day_dataframe_random_data, indexer_sl ): s = multiindex_year_month_day_dataframe_random_data["A"] expected = s.iloc[49] result = indexer_sl(s)[2000, 3, 10] assert result == expected @pytest.mark.parametrize( "indexer,expected_error,expected_error_msg", [ (lambda s: s.__getitem__((2000, 3, 4)), KeyError, r"^\(2000, 3, 4\)$"), (lambda s: s[(2000, 3, 4)], KeyError, r"^\(2000, 3, 4\)$"), (lambda s: s.loc[(2000, 3, 4)], KeyError, r"^\(2000, 3, 4\)$"), (lambda s: s.loc[(2000, 3, 4, 5)], IndexingError, "Too many indexers"), (lambda s: s.__getitem__(len(s)), KeyError, ""), # match should include len(s) (lambda s: s[len(s)], KeyError, ""), # match should include len(s) ( lambda s: s.iloc[len(s)], IndexError, "single positional indexer is out-of-bounds", ), ], ) def test_series_getitem_indexing_errors( multiindex_year_month_day_dataframe_random_data, indexer, expected_error, expected_error_msg, ): s = multiindex_year_month_day_dataframe_random_data["A"] with pytest.raises(expected_error, match=expected_error_msg): indexer(s) def test_series_getitem_corner_generator( multiindex_year_month_day_dataframe_random_data, ): s = multiindex_year_month_day_dataframe_random_data["A"] result = s[(x > 0 for x in s)] expected = s[s > 0] tm.assert_series_equal(result, expected) # ---------------------------------------------------------------------------- # test indexing of DataFrame with multi-level Index # ---------------------------------------------------------------------------- def test_getitem_simple(multiindex_dataframe_random_data): df = multiindex_dataframe_random_data.T expected = df.values[:, 0] result = df["foo", "one"].values tm.assert_almost_equal(result, expected) @pytest.mark.parametrize( "indexer,expected_error_msg", [ (lambda df: df[("foo", "four")], r"^\('foo', 'four'\)$"), (lambda df: df["foobar"], r"^'foobar'$"), ], ) def test_frame_getitem_simple_key_error( multiindex_dataframe_random_data, indexer, expected_error_msg ): df = multiindex_dataframe_random_data.T with pytest.raises(KeyError, match=expected_error_msg): indexer(df) def test_frame_getitem_multicolumn_empty_level(): df = DataFrame({"a": ["1", "2", "3"], "b": ["2", "3", "4"]}) df.columns = [ ["level1 item1", "level1 item2"], ["", "level2 item2"], ["level3 item1", "level3 item2"], ] result = df["level1 item1"] expected = DataFrame( [["1"], ["2"], ["3"]], index=df.index, columns=["level3 item1"] ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "indexer,expected_slice", [ (lambda df: df["foo"], slice(3)), (lambda df: df["bar"], slice(3, 5)), (lambda df: df.loc[:, "bar"], slice(3, 5)), ], ) def test_frame_getitem_toplevel( multiindex_dataframe_random_data, indexer, expected_slice ): df = multiindex_dataframe_random_data.T expected = df.reindex(columns=df.columns[expected_slice]) expected.columns = expected.columns.droplevel(0) result = indexer(df) tm.assert_frame_equal(result, expected) def test_frame_mixed_depth_get(): arrays = [ ["a", "top", "top", "routine1", "routine1", "routine2"], ["", "OD", "OD", "result1", "result2", "result1"], ["", "wx", "wy", "", "", ""], ] tuples = sorted(zip(*arrays)) index = MultiIndex.from_tuples(tuples) df = DataFrame(np.random.randn(4, 6), columns=index) result = df["a"] expected = df["a", "", ""].rename("a") tm.assert_series_equal(result, expected) result = df["routine1", "result1"] expected = df["routine1", "result1", ""] expected = expected.rename(("routine1", "result1")) tm.assert_series_equal(result, expected) def test_frame_getitem_nan_multiindex(nulls_fixture): # GH#29751 # loc on a multiindex containing nan values n = nulls_fixture # for code readability cols = ["a", "b", "c"] df = DataFrame( [[11, n, 13], [21, n, 23], [31, n, 33], [41, n, 43]], columns=cols, ).set_index(["a", "b"]) df["c"] = df["c"].astype("int64") idx = (21, n) result = df.loc[:idx] expected = DataFrame([[11, n, 13], [21, n, 23]], columns=cols).set_index(["a", "b"]) expected["c"] = expected["c"].astype("int64") tm.assert_frame_equal(result, expected) result = df.loc[idx:] expected = DataFrame( [[21, n, 23], [31, n, 33], [41, n, 43]], columns=cols ).set_index(["a", "b"]) expected["c"] = expected["c"].astype("int64") tm.assert_frame_equal(result, expected) idx1, idx2 = (21, n), (31, n) result = df.loc[idx1:idx2] expected = DataFrame([[21, n, 23], [31, n, 33]], columns=cols).set_index(["a", "b"]) expected["c"] = expected["c"].astype("int64") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "indexer,expected", [ ( (["b"], ["bar", np.nan]), ( DataFrame( [[2, 3], [5, 6]], columns=MultiIndex.from_tuples([("b", "bar"), ("b", np.nan)]), dtype="int64", ) ), ), ( (["a", "b"]), ( DataFrame( [[1, 2, 3], [4, 5, 6]], columns=MultiIndex.from_tuples( [("a", "foo"), ("b", "bar"), ("b", np.nan)] ), dtype="int64", ) ), ), ( (["b"]), ( DataFrame( [[2, 3], [5, 6]], columns=MultiIndex.from_tuples([("b", "bar"), ("b", np.nan)]), dtype="int64", ) ), ), ( (["b"], ["bar"]), ( DataFrame( [[2], [5]], columns=MultiIndex.from_tuples([("b", "bar")]), dtype="int64", ) ), ), ( (["b"], [np.nan]), ( DataFrame( [[3], [6]], columns=MultiIndex( codes=[[1], [-1]], levels=[["a", "b"], ["bar", "foo"]] ), dtype="int64", ) ), ), (("b", np.nan), Series([3, 6], dtype="int64", name=("b", np.nan))), ], ) def test_frame_getitem_nan_cols_multiindex( indexer, expected, nulls_fixture, ): # Slicing MultiIndex including levels with nan values, for more information # see GH#25154 df = DataFrame( [[1, 2, 3], [4, 5, 6]], columns=MultiIndex.from_tuples( [("a", "foo"), ("b", "bar"), ("b", nulls_fixture)] ), dtype="int64", ) result = df.loc[:, indexer] tm.assert_equal(result, expected) # ---------------------------------------------------------------------------- # test indexing of DataFrame with multi-level Index with duplicates # ---------------------------------------------------------------------------- @pytest.fixture def dataframe_with_duplicate_index(): """Fixture for DataFrame used in tests for gh-4145 and gh-4146""" data = [["a", "d", "e", "c", "f", "b"], [1, 4, 5, 3, 6, 2], [1, 4, 5, 3, 6, 2]] index = ["h1", "h3", "h5"] columns = MultiIndex( levels=[["A", "B"], ["A1", "A2", "B1", "B2"]], codes=[[0, 0, 0, 1, 1, 1], [0, 3, 3, 0, 1, 2]], names=["main", "sub"], ) return DataFrame(data, index=index, columns=columns) @pytest.mark.parametrize( "indexer", [lambda df: df[("A", "A1")], lambda df: df.loc[:, ("A", "A1")]] ) def test_frame_mi_access(dataframe_with_duplicate_index, indexer): # GH 4145 df = dataframe_with_duplicate_index index = Index(["h1", "h3", "h5"]) columns = MultiIndex.from_tuples([("A", "A1")], names=["main", "sub"]) expected = DataFrame([["a", 1, 1]], index=columns, columns=index).T result = indexer(df) tm.assert_frame_equal(result, expected) def test_frame_mi_access_returns_series(dataframe_with_duplicate_index): # GH 4146, not returning a block manager when selecting a unique index # from a duplicate index # as of 4879, this returns a Series (which is similar to what happens # with a non-unique) df = dataframe_with_duplicate_index expected = Series(["a", 1, 1], index=["h1", "h3", "h5"], name="A1") result = df["A"]["A1"] tm.assert_series_equal(result, expected) def test_frame_mi_access_returns_frame(dataframe_with_duplicate_index): # selecting a non_unique from the 2nd level df = dataframe_with_duplicate_index expected = DataFrame( [["d", 4, 4], ["e", 5, 5]], index=Index(["B2", "B2"], name="sub"), columns=["h1", "h3", "h5"], ).T result = df["A"]["B2"] tm.assert_frame_equal(result, expected) def test_frame_mi_empty_slice(): # GH 15454 df = DataFrame(0, index=range(2), columns=MultiIndex.from_product([[1], [2]])) result = df[[]] expected = DataFrame( index=[0, 1], columns=MultiIndex(levels=[[1], [2]], codes=[[], []]) ) tm.assert_frame_equal(result, expected) def test_loc_empty_multiindex(): # GH#36936 arrays = [["a", "a", "b", "a"], ["a", "a", "b", "b"]] index = MultiIndex.from_arrays(arrays, names=("idx1", "idx2")) df = DataFrame([1, 2, 3, 4], index=index, columns=["value"]) # loc on empty multiindex == loc with False mask empty_multiindex = df.loc[df.loc[:, "value"] == 0, :].index result = df.loc[empty_multiindex, :] expected = df.loc[[False] * len(df.index), :] tm.assert_frame_equal(result, expected) # replacing value with loc on empty multiindex df.loc[df.loc[df.loc[:, "value"] == 0].index, "value"] = 5 result = df expected = DataFrame([1, 2, 3, 4], index=index, columns=["value"]) tm.assert_frame_equal(result, expected)