""" Collection of tests asserting things that should be true for any index subclass except for MultiIndex. Makes use of the `index_flat` fixture defined in pandas/conftest.py. """ import re import numpy as np import pytest from pandas.compat import ( IS64, pa_version_under7p0, ) from pandas.core.dtypes.common import is_integer_dtype import pandas as pd from pandas import ( CategoricalIndex, DatetimeIndex, MultiIndex, PeriodIndex, RangeIndex, TimedeltaIndex, ) import pandas._testing as tm from pandas.core.api import NumericIndex class TestCommon: @pytest.mark.parametrize("name", [None, "new_name"]) def test_to_frame(self, name, index_flat): # see GH#15230, GH#22580 idx = index_flat if name: idx_name = name else: idx_name = idx.name or 0 df = idx.to_frame(name=idx_name) assert df.index is idx assert len(df.columns) == 1 assert df.columns[0] == idx_name assert df[idx_name].values is not idx.values df = idx.to_frame(index=False, name=idx_name) assert df.index is not idx def test_droplevel(self, index_flat): # GH 21115 # MultiIndex is tested separately in test_multi.py index = index_flat assert index.droplevel([]).equals(index) for level in [index.name, [index.name]]: if isinstance(index.name, tuple) and level is index.name: # GH 21121 : droplevel with tuple name continue msg = ( "Cannot remove 1 levels from an index with 1 levels: at least one " "level must be left." ) with pytest.raises(ValueError, match=msg): index.droplevel(level) for level in "wrong", ["wrong"]: with pytest.raises( KeyError, match=r"'Requested level \(wrong\) does not match index name \(None\)'", ): index.droplevel(level) def test_constructor_non_hashable_name(self, index_flat): # GH 20527 index = index_flat message = "Index.name must be a hashable type" renamed = [["1"]] # With .rename() with pytest.raises(TypeError, match=message): index.rename(name=renamed) # With .set_names() with pytest.raises(TypeError, match=message): index.set_names(names=renamed) def test_constructor_unwraps_index(self, index_flat): a = index_flat # Passing dtype is necessary for Index([True, False], dtype=object) # case. b = type(a)(a, dtype=a.dtype) tm.assert_equal(a._data, b._data) def test_to_flat_index(self, index_flat): # 22866 index = index_flat result = index.to_flat_index() tm.assert_index_equal(result, index) def test_set_name_methods(self, index_flat): # MultiIndex tested separately index = index_flat new_name = "This is the new name for this index" original_name = index.name new_ind = index.set_names([new_name]) assert new_ind.name == new_name assert index.name == original_name res = index.rename(new_name, inplace=True) # should return None assert res is None assert index.name == new_name assert index.names == [new_name] # FIXME: dont leave commented-out # with pytest.raises(TypeError, match="list-like"): # # should still fail even if it would be the right length # ind.set_names("a") with pytest.raises(ValueError, match="Level must be None"): index.set_names("a", level=0) # rename in place just leaves tuples and other containers alone name = ("A", "B") index.rename(name, inplace=True) assert index.name == name assert index.names == [name] def test_copy_and_deepcopy(self, index_flat): from copy import ( copy, deepcopy, ) index = index_flat for func in (copy, deepcopy): idx_copy = func(index) assert idx_copy is not index assert idx_copy.equals(index) new_copy = index.copy(deep=True, name="banana") assert new_copy.name == "banana" def test_copy_name(self, index_flat): # GH#12309: Check that the "name" argument # passed at initialization is honored. index = index_flat first = type(index)(index, copy=True, name="mario") second = type(first)(first, copy=False) # Even though "copy=False", we want a new object. assert first is not second tm.assert_index_equal(first, second) # Not using tm.assert_index_equal() since names differ. assert index.equals(first) assert first.name == "mario" assert second.name == "mario" # TODO: belongs in series arithmetic tests? s1 = pd.Series(2, index=first) s2 = pd.Series(3, index=second[:-1]) # See GH#13365 s3 = s1 * s2 assert s3.index.name == "mario" def test_copy_name2(self, index_flat): # GH#35592 index = index_flat assert index.copy(name="mario").name == "mario" with pytest.raises(ValueError, match="Length of new names must be 1, got 2"): index.copy(name=["mario", "luigi"]) msg = f"{type(index).__name__}.name must be a hashable type" with pytest.raises(TypeError, match=msg): index.copy(name=[["mario"]]) def test_unique_level(self, index_flat): # don't test a MultiIndex here (as its tested separated) index = index_flat # GH 17896 expected = index.drop_duplicates() for level in [0, index.name, None]: result = index.unique(level=level) tm.assert_index_equal(result, expected) msg = "Too many levels: Index has only 1 level, not 4" with pytest.raises(IndexError, match=msg): index.unique(level=3) msg = ( rf"Requested level \(wrong\) does not match index name " rf"\({re.escape(index.name.__repr__())}\)" ) with pytest.raises(KeyError, match=msg): index.unique(level="wrong") def test_unique(self, index_flat): # MultiIndex tested separately index = index_flat if not len(index): pytest.skip("Skip check for empty Index and MultiIndex") idx = index[[0] * 5] idx_unique = index[[0]] # We test against `idx_unique`, so first we make sure it's unique # and doesn't contain nans. assert idx_unique.is_unique is True try: assert idx_unique.hasnans is False except NotImplementedError: pass result = idx.unique() tm.assert_index_equal(result, idx_unique) # nans: if not index._can_hold_na: pytest.skip("Skip na-check if index cannot hold na") vals = index._values[[0] * 5] vals[0] = np.nan vals_unique = vals[:2] idx_nan = index._shallow_copy(vals) idx_unique_nan = index._shallow_copy(vals_unique) assert idx_unique_nan.is_unique is True assert idx_nan.dtype == index.dtype assert idx_unique_nan.dtype == index.dtype expected = idx_unique_nan for i in [idx_nan, idx_unique_nan]: result = i.unique() tm.assert_index_equal(result, expected) def test_searchsorted_monotonic(self, index_flat, request): # GH17271 index = index_flat # not implemented for tuple searches in MultiIndex # or Intervals searches in IntervalIndex if isinstance(index, pd.IntervalIndex): mark = pytest.mark.xfail( reason="IntervalIndex.searchsorted does not support Interval arg", raises=NotImplementedError, ) request.node.add_marker(mark) # nothing to test if the index is empty if index.empty: pytest.skip("Skip check for empty Index") value = index[0] # determine the expected results (handle dupes for 'right') expected_left, expected_right = 0, (index == value).argmin() if expected_right == 0: # all values are the same, expected_right should be length expected_right = len(index) # test _searchsorted_monotonic in all cases # test searchsorted only for increasing if index.is_monotonic_increasing: ssm_left = index._searchsorted_monotonic(value, side="left") assert expected_left == ssm_left ssm_right = index._searchsorted_monotonic(value, side="right") assert expected_right == ssm_right ss_left = index.searchsorted(value, side="left") assert expected_left == ss_left ss_right = index.searchsorted(value, side="right") assert expected_right == ss_right elif index.is_monotonic_decreasing: ssm_left = index._searchsorted_monotonic(value, side="left") assert expected_left == ssm_left ssm_right = index._searchsorted_monotonic(value, side="right") assert expected_right == ssm_right else: # non-monotonic should raise. msg = "index must be monotonic increasing or decreasing" with pytest.raises(ValueError, match=msg): index._searchsorted_monotonic(value, side="left") def test_drop_duplicates(self, index_flat, keep): # MultiIndex is tested separately index = index_flat if isinstance(index, RangeIndex): pytest.skip( "RangeIndex is tested in test_drop_duplicates_no_duplicates " "as it cannot hold duplicates" ) if len(index) == 0: pytest.skip( "empty index is tested in test_drop_duplicates_no_duplicates " "as it cannot hold duplicates" ) # make unique index holder = type(index) unique_values = list(set(index)) dtype = index.dtype if isinstance(index, NumericIndex) else None unique_idx = holder(unique_values, dtype=dtype) # make duplicated index n = len(unique_idx) duplicated_selection = np.random.choice(n, int(n * 1.5)) idx = holder(unique_idx.values[duplicated_selection]) # Series.duplicated is tested separately expected_duplicated = ( pd.Series(duplicated_selection).duplicated(keep=keep).values ) tm.assert_numpy_array_equal(idx.duplicated(keep=keep), expected_duplicated) # Series.drop_duplicates is tested separately expected_dropped = holder(pd.Series(idx).drop_duplicates(keep=keep)) tm.assert_index_equal(idx.drop_duplicates(keep=keep), expected_dropped) def test_drop_duplicates_no_duplicates(self, index_flat): # MultiIndex is tested separately index = index_flat # make unique index if isinstance(index, RangeIndex): # RangeIndex cannot have duplicates unique_idx = index else: holder = type(index) unique_values = list(set(index)) dtype = index.dtype if isinstance(index, NumericIndex) else None unique_idx = holder(unique_values, dtype=dtype) # check on unique index expected_duplicated = np.array([False] * len(unique_idx), dtype="bool") tm.assert_numpy_array_equal(unique_idx.duplicated(), expected_duplicated) result_dropped = unique_idx.drop_duplicates() tm.assert_index_equal(result_dropped, unique_idx) # validate shallow copy assert result_dropped is not unique_idx def test_drop_duplicates_inplace(self, index): msg = r"drop_duplicates\(\) got an unexpected keyword argument" with pytest.raises(TypeError, match=msg): index.drop_duplicates(inplace=True) def test_has_duplicates(self, index_flat): # MultiIndex tested separately in: # tests/indexes/multi/test_unique_and_duplicates. index = index_flat holder = type(index) if not len(index) or isinstance(index, RangeIndex): # MultiIndex tested separately in: # tests/indexes/multi/test_unique_and_duplicates. # RangeIndex is unique by definition. pytest.skip("Skip check for empty Index, MultiIndex, and RangeIndex") idx = holder([index[0]] * 5) assert idx.is_unique is False assert idx.has_duplicates is True @pytest.mark.parametrize( "dtype", ["int64", "uint64", "float64", "category", "datetime64[ns]", "timedelta64[ns]"], ) def test_astype_preserves_name(self, index, dtype): # https://github.com/pandas-dev/pandas/issues/32013 if isinstance(index, MultiIndex): index.names = ["idx" + str(i) for i in range(index.nlevels)] else: index.name = "idx" warn = None if ( isinstance(index, DatetimeIndex) and index.tz is not None and dtype == "datetime64[ns]" ): # This astype is deprecated in favor of tz_localize warn = FutureWarning elif index.dtype.kind == "c" and dtype in ["float64", "int64", "uint64"]: # imaginary components discarded warn = np.ComplexWarning is_pyarrow_str = ( str(index.dtype) == "string[pyarrow]" and pa_version_under7p0 and dtype == "category" ) try: # Some of these conversions cannot succeed so we use a try / except with tm.assert_produces_warning( warn, raise_on_extra_warnings=is_pyarrow_str, check_stacklevel=False, ): result = index.astype(dtype) except (ValueError, TypeError, NotImplementedError, SystemError): return if isinstance(index, MultiIndex): assert result.names == index.names else: assert result.name == index.name def test_asi8_deprecation(self, index): # GH#37877 if isinstance(index, (DatetimeIndex, TimedeltaIndex, PeriodIndex)): warn = None else: warn = FutureWarning with tm.assert_produces_warning(warn): index.asi8 def test_hasnans_isnans(self, index_flat): # GH#11343, added tests for hasnans / isnans index = index_flat # cases in indices doesn't include NaN idx = index.copy(deep=True) expected = np.array([False] * len(idx), dtype=bool) tm.assert_numpy_array_equal(idx._isnan, expected) assert idx.hasnans is False idx = index.copy(deep=True) values = idx._values if len(index) == 0: return elif isinstance(index, NumericIndex) and is_integer_dtype(index.dtype): return elif index.dtype == bool: # values[1] = np.nan below casts to True! return values[1] = np.nan idx = type(index)(values) expected = np.array([False] * len(idx), dtype=bool) expected[1] = True tm.assert_numpy_array_equal(idx._isnan, expected) assert idx.hasnans is True @pytest.mark.parametrize("na_position", [None, "middle"]) def test_sort_values_invalid_na_position(index_with_missing, na_position): with pytest.raises(ValueError, match=f"invalid na_position: {na_position}"): index_with_missing.sort_values(na_position=na_position) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_sort_values_with_missing(index_with_missing, na_position, request): # GH 35584. Test that sort_values works with missing values, # sort non-missing and place missing according to na_position if isinstance(index_with_missing, CategoricalIndex): request.node.add_marker( pytest.mark.xfail( reason="missing value sorting order not well-defined", strict=False ) ) missing_count = np.sum(index_with_missing.isna()) not_na_vals = index_with_missing[index_with_missing.notna()].values sorted_values = np.sort(not_na_vals) if na_position == "first": sorted_values = np.concatenate([[None] * missing_count, sorted_values]) else: sorted_values = np.concatenate([sorted_values, [None] * missing_count]) # Explicitly pass dtype needed for Index backed by EA e.g. IntegerArray expected = type(index_with_missing)(sorted_values, dtype=index_with_missing.dtype) result = index_with_missing.sort_values(na_position=na_position) tm.assert_index_equal(result, expected) def test_ndarray_compat_properties(index): if isinstance(index, PeriodIndex) and not IS64: pytest.skip("Overflow") idx = index assert idx.T.equals(idx) assert idx.transpose().equals(idx) values = idx.values assert idx.shape == values.shape assert idx.ndim == values.ndim assert idx.size == values.size if not isinstance(index, (RangeIndex, MultiIndex)): # These two are not backed by an ndarray assert idx.nbytes == values.nbytes # test for validity idx.nbytes idx.values.nbytes