import re import numpy as np import pytest from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike import pandas as pd from pandas import ( IntervalIndex, MultiIndex, RangeIndex, ) import pandas._testing as tm from pandas.core.api import Int64Index def test_labels_dtypes(): # GH 8456 i = MultiIndex.from_tuples([("A", 1), ("A", 2)]) assert i.codes[0].dtype == "int8" assert i.codes[1].dtype == "int8" i = MultiIndex.from_product([["a"], range(40)]) assert i.codes[1].dtype == "int8" i = MultiIndex.from_product([["a"], range(400)]) assert i.codes[1].dtype == "int16" i = MultiIndex.from_product([["a"], range(40000)]) assert i.codes[1].dtype == "int32" i = MultiIndex.from_product([["a"], range(1000)]) assert (i.codes[0] >= 0).all() assert (i.codes[1] >= 0).all() def test_values_boxed(): tuples = [ (1, pd.Timestamp("2000-01-01")), (2, pd.NaT), (3, pd.Timestamp("2000-01-03")), (1, pd.Timestamp("2000-01-04")), (2, pd.Timestamp("2000-01-02")), (3, pd.Timestamp("2000-01-03")), ] result = MultiIndex.from_tuples(tuples) expected = construct_1d_object_array_from_listlike(tuples) tm.assert_numpy_array_equal(result.values, expected) # Check that code branches for boxed values produce identical results tm.assert_numpy_array_equal(result.values[:4], result[:4].values) def test_values_multiindex_datetimeindex(): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(10**18, 10**18 + 5) naive = pd.DatetimeIndex(ints) aware = pd.DatetimeIndex(ints, tz="US/Central") idx = MultiIndex.from_arrays([naive, aware]) result = idx.values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware) # n_lev > n_lab result = idx[:2].values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive[:2]) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware[:2]) def test_values_multiindex_periodindex(): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(2007, 2012) pidx = pd.PeriodIndex(ints, freq="D") idx = MultiIndex.from_arrays([ints, pidx]) result = idx.values outer = Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, Int64Index(ints)) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx) # n_lev > n_lab result = idx[:2].values outer = Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, Int64Index(ints[:2])) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx[:2]) def test_consistency(): # need to construct an overflow major_axis = list(range(70000)) minor_axis = list(range(10)) major_codes = np.arange(70000) minor_codes = np.repeat(range(10), 7000) # the fact that is works means it's consistent index = MultiIndex( levels=[major_axis, minor_axis], codes=[major_codes, minor_codes] ) # inconsistent major_codes = np.array([0, 0, 1, 1, 1, 2, 2, 3, 3]) minor_codes = np.array([0, 1, 0, 1, 1, 0, 1, 0, 1]) index = MultiIndex( levels=[major_axis, minor_axis], codes=[major_codes, minor_codes] ) assert index.is_unique is False @pytest.mark.slow def test_hash_collisions(): # non-smoke test that we don't get hash collisions index = MultiIndex.from_product( [np.arange(1000), np.arange(1000)], names=["one", "two"] ) result = index.get_indexer(index.values) tm.assert_numpy_array_equal(result, np.arange(len(index), dtype="intp")) for i in [0, 1, len(index) - 2, len(index) - 1]: result = index.get_loc(index[i]) assert result == i def test_dims(): pass def test_take_invalid_kwargs(): vals = [["A", "B"], [pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02")]] idx = MultiIndex.from_product(vals, names=["str", "dt"]) indices = [1, 2] msg = r"take\(\) got an unexpected keyword argument 'foo'" with pytest.raises(TypeError, match=msg): idx.take(indices, foo=2) msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): idx.take(indices, out=indices) msg = "the 'mode' parameter is not supported" with pytest.raises(ValueError, match=msg): idx.take(indices, mode="clip") def test_isna_behavior(idx): # should not segfault GH5123 # NOTE: if MI representation changes, may make sense to allow # isna(MI) msg = "isna is not defined for MultiIndex" with pytest.raises(NotImplementedError, match=msg): pd.isna(idx) def test_large_multiindex_error(): # GH12527 df_below_1000000 = pd.DataFrame( 1, index=MultiIndex.from_product([[1, 2], range(499999)]), columns=["dest"] ) with pytest.raises(KeyError, match=r"^\(-1, 0\)$"): df_below_1000000.loc[(-1, 0), "dest"] with pytest.raises(KeyError, match=r"^\(3, 0\)$"): df_below_1000000.loc[(3, 0), "dest"] df_above_1000000 = pd.DataFrame( 1, index=MultiIndex.from_product([[1, 2], range(500001)]), columns=["dest"] ) with pytest.raises(KeyError, match=r"^\(-1, 0\)$"): df_above_1000000.loc[(-1, 0), "dest"] with pytest.raises(KeyError, match=r"^\(3, 0\)$"): df_above_1000000.loc[(3, 0), "dest"] def test_million_record_attribute_error(): # GH 18165 r = list(range(1000000)) df = pd.DataFrame( {"a": r, "b": r}, index=MultiIndex.from_tuples([(x, x) for x in r]) ) msg = "'Series' object has no attribute 'foo'" with pytest.raises(AttributeError, match=msg): df["a"].foo() def test_can_hold_identifiers(idx): key = idx[0] assert idx._can_hold_identifiers_and_holds_name(key) is True def test_metadata_immutable(idx): levels, codes = idx.levels, idx.codes # shouldn't be able to set at either the top level or base level mutable_regex = re.compile("does not support mutable operations") with pytest.raises(TypeError, match=mutable_regex): levels[0] = levels[0] with pytest.raises(TypeError, match=mutable_regex): levels[0][0] = levels[0][0] # ditto for labels with pytest.raises(TypeError, match=mutable_regex): codes[0] = codes[0] with pytest.raises(ValueError, match="assignment destination is read-only"): codes[0][0] = codes[0][0] # and for names names = idx.names with pytest.raises(TypeError, match=mutable_regex): names[0] = names[0] def test_level_setting_resets_attributes(): ind = MultiIndex.from_arrays([["A", "A", "B", "B", "B"], [1, 2, 1, 2, 3]]) assert ind.is_monotonic_increasing with tm.assert_produces_warning(FutureWarning): ind.set_levels([["A", "B"], [1, 3, 2]], inplace=True) # if this fails, probably didn't reset the cache correctly. assert not ind.is_monotonic_increasing def test_rangeindex_fallback_coercion_bug(): # GH 12893 foo = pd.DataFrame(np.arange(100).reshape((10, 10))) bar = pd.DataFrame(np.arange(100).reshape((10, 10))) df = pd.concat({"foo": foo.stack(), "bar": bar.stack()}, axis=1) df.index.names = ["fizz", "buzz"] str(df) expected = pd.DataFrame( {"bar": np.arange(100), "foo": np.arange(100)}, index=MultiIndex.from_product([range(10), range(10)], names=["fizz", "buzz"]), ) tm.assert_frame_equal(df, expected, check_like=True) result = df.index.get_level_values("fizz") expected = Int64Index(np.arange(10), name="fizz").repeat(10) tm.assert_index_equal(result, expected) result = df.index.get_level_values("buzz") expected = Int64Index(np.tile(np.arange(10), 10), name="buzz") tm.assert_index_equal(result, expected) def test_memory_usage(idx): result = idx.memory_usage() if len(idx): idx.get_loc(idx[0]) result2 = idx.memory_usage() result3 = idx.memory_usage(deep=True) # RangeIndex, IntervalIndex # don't have engines if not isinstance(idx, (RangeIndex, IntervalIndex)): assert result2 > result if idx.inferred_type == "object": assert result3 > result2 else: # we report 0 for no-length assert result == 0 def test_nlevels(idx): assert idx.nlevels == 2