from datetime import datetime from io import StringIO import itertools import numpy as np import pytest from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Period, Series, Timedelta, date_range, ) import pandas._testing as tm from pandas.core.reshape import reshape as reshape_lib class TestDataFrameReshape: def test_stack_unstack(self, float_frame, using_array_manager): warn = FutureWarning if using_array_manager else None msg = "will attempt to set the values inplace" df = float_frame.copy() with tm.assert_produces_warning(warn, match=msg): df[:] = np.arange(np.prod(df.shape)).reshape(df.shape) stacked = df.stack() stacked_df = DataFrame({"foo": stacked, "bar": stacked}) unstacked = stacked.unstack() unstacked_df = stacked_df.unstack() tm.assert_frame_equal(unstacked, df) tm.assert_frame_equal(unstacked_df["bar"], df) unstacked_cols = stacked.unstack(0) unstacked_cols_df = stacked_df.unstack(0) tm.assert_frame_equal(unstacked_cols.T, df) tm.assert_frame_equal(unstacked_cols_df["bar"].T, df) def test_stack_mixed_level(self): # GH 18310 levels = [range(3), [3, "a", "b"], [1, 2]] # flat columns: df = DataFrame(1, index=levels[0], columns=levels[1]) result = df.stack() expected = Series(1, index=MultiIndex.from_product(levels[:2])) tm.assert_series_equal(result, expected) # MultiIndex columns: df = DataFrame(1, index=levels[0], columns=MultiIndex.from_product(levels[1:])) result = df.stack(1) expected = DataFrame( 1, index=MultiIndex.from_product([levels[0], levels[2]]), columns=levels[1] ) tm.assert_frame_equal(result, expected) # as above, but used labels in level are actually of homogeneous type result = df[["a", "b"]].stack(1) expected = expected[["a", "b"]] tm.assert_frame_equal(result, expected) def test_unstack_not_consolidated(self, using_array_manager): # Gh#34708 df = DataFrame({"x": [1, 2, np.NaN], "y": [3.0, 4, np.NaN]}) df2 = df[["x"]] df2["y"] = df["y"] if not using_array_manager: assert len(df2._mgr.blocks) == 2 res = df2.unstack() expected = df.unstack() tm.assert_series_equal(res, expected) def test_unstack_fill(self): # GH #9746: fill_value keyword argument for Series # and DataFrame unstack # From a series data = Series([1, 2, 4, 5], dtype=np.int16) data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = data.unstack(fill_value=-1) expected = DataFrame( {"a": [1, -1, 5], "b": [2, 4, -1]}, index=["x", "y", "z"], dtype=np.int16 ) tm.assert_frame_equal(result, expected) # From a series with incorrect data type for fill_value result = data.unstack(fill_value=0.5) expected = DataFrame( {"a": [1, 0.5, 5], "b": [2, 4, 0.5]}, index=["x", "y", "z"], dtype=float ) tm.assert_frame_equal(result, expected) # GH #13971: fill_value when unstacking multiple levels: df = DataFrame( {"x": ["a", "a", "b"], "y": ["j", "k", "j"], "z": [0, 1, 2], "w": [0, 1, 2]} ).set_index(["x", "y", "z"]) unstacked = df.unstack(["x", "y"], fill_value=0) key = ("w", "b", "j") expected = unstacked[key] result = Series([0, 0, 2], index=unstacked.index, name=key) tm.assert_series_equal(result, expected) stacked = unstacked.stack(["x", "y"]) stacked.index = stacked.index.reorder_levels(df.index.names) # Workaround for GH #17886 (unnecessarily casts to float): stacked = stacked.astype(np.int64) result = stacked.loc[df.index] tm.assert_frame_equal(result, df) # From a series s = df["w"] result = s.unstack(["x", "y"], fill_value=0) expected = unstacked["w"] tm.assert_frame_equal(result, expected) def test_unstack_fill_frame(self): # From a dataframe rows = [[1, 2], [3, 4], [5, 6], [7, 8]] df = DataFrame(rows, columns=list("AB"), dtype=np.int32) df.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = df.unstack(fill_value=-1) rows = [[1, 3, 2, 4], [-1, 5, -1, 6], [7, -1, 8, -1]] expected = DataFrame(rows, index=list("xyz"), dtype=np.int32) expected.columns = MultiIndex.from_tuples( [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")] ) tm.assert_frame_equal(result, expected) # From a mixed type dataframe df["A"] = df["A"].astype(np.int16) df["B"] = df["B"].astype(np.float64) result = df.unstack(fill_value=-1) expected["A"] = expected["A"].astype(np.int16) expected["B"] = expected["B"].astype(np.float64) tm.assert_frame_equal(result, expected) # From a dataframe with incorrect data type for fill_value result = df.unstack(fill_value=0.5) rows = [[1, 3, 2, 4], [0.5, 5, 0.5, 6], [7, 0.5, 8, 0.5]] expected = DataFrame(rows, index=list("xyz"), dtype=float) expected.columns = MultiIndex.from_tuples( [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")] ) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_datetime(self): # Test unstacking with date times dv = date_range("2012-01-01", periods=4).values data = Series(dv) data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = data.unstack() expected = DataFrame( {"a": [dv[0], pd.NaT, dv[3]], "b": [dv[1], dv[2], pd.NaT]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) result = data.unstack(fill_value=dv[0]) expected = DataFrame( {"a": [dv[0], dv[0], dv[3]], "b": [dv[1], dv[2], dv[0]]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_timedelta(self): # Test unstacking with time deltas td = [Timedelta(days=i) for i in range(4)] data = Series(td) data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = data.unstack() expected = DataFrame( {"a": [td[0], pd.NaT, td[3]], "b": [td[1], td[2], pd.NaT]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) result = data.unstack(fill_value=td[1]) expected = DataFrame( {"a": [td[0], td[1], td[3]], "b": [td[1], td[2], td[1]]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_period(self): # Test unstacking with period periods = [ Period("2012-01"), Period("2012-02"), Period("2012-03"), Period("2012-04"), ] data = Series(periods) data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = data.unstack() expected = DataFrame( {"a": [periods[0], None, periods[3]], "b": [periods[1], periods[2], None]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) result = data.unstack(fill_value=periods[1]) expected = DataFrame( { "a": [periods[0], periods[1], periods[3]], "b": [periods[1], periods[2], periods[1]], }, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_categorical(self): # Test unstacking with categorical data = Series(["a", "b", "c", "a"], dtype="category") data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) # By default missing values will be NaN result = data.unstack() expected = DataFrame( { "a": pd.Categorical(list("axa"), categories=list("abc")), "b": pd.Categorical(list("bcx"), categories=list("abc")), }, index=list("xyz"), ) tm.assert_frame_equal(result, expected) # Fill with non-category results in a ValueError msg = r"Cannot setitem on a Categorical with a new category \(d\)" with pytest.raises(TypeError, match=msg): data.unstack(fill_value="d") # Fill with category value replaces missing values as expected result = data.unstack(fill_value="c") expected = DataFrame( { "a": pd.Categorical(list("aca"), categories=list("abc")), "b": pd.Categorical(list("bcc"), categories=list("abc")), }, index=list("xyz"), ) tm.assert_frame_equal(result, expected) def test_unstack_tuplename_in_multiindex(self): # GH 19966 idx = MultiIndex.from_product( [["a", "b", "c"], [1, 2, 3]], names=[("A", "a"), ("B", "b")] ) df = DataFrame({"d": [1] * 9, "e": [2] * 9}, index=idx) result = df.unstack(("A", "a")) expected = DataFrame( [[1, 1, 1, 2, 2, 2], [1, 1, 1, 2, 2, 2], [1, 1, 1, 2, 2, 2]], columns=MultiIndex.from_tuples( [ ("d", "a"), ("d", "b"), ("d", "c"), ("e", "a"), ("e", "b"), ("e", "c"), ], names=[None, ("A", "a")], ), index=Index([1, 2, 3], name=("B", "b")), ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "unstack_idx, expected_values, expected_index, expected_columns", [ ( ("A", "a"), [[1, 1, 2, 2], [1, 1, 2, 2], [1, 1, 2, 2], [1, 1, 2, 2]], MultiIndex.from_tuples( [(1, 3), (1, 4), (2, 3), (2, 4)], names=["B", "C"] ), MultiIndex.from_tuples( [("d", "a"), ("d", "b"), ("e", "a"), ("e", "b")], names=[None, ("A", "a")], ), ), ( (("A", "a"), "B"), [[1, 1, 1, 1, 2, 2, 2, 2], [1, 1, 1, 1, 2, 2, 2, 2]], Index([3, 4], name="C"), MultiIndex.from_tuples( [ ("d", "a", 1), ("d", "a", 2), ("d", "b", 1), ("d", "b", 2), ("e", "a", 1), ("e", "a", 2), ("e", "b", 1), ("e", "b", 2), ], names=[None, ("A", "a"), "B"], ), ), ], ) def test_unstack_mixed_type_name_in_multiindex( self, unstack_idx, expected_values, expected_index, expected_columns ): # GH 19966 idx = MultiIndex.from_product( [["a", "b"], [1, 2], [3, 4]], names=[("A", "a"), "B", "C"] ) df = DataFrame({"d": [1] * 8, "e": [2] * 8}, index=idx) result = df.unstack(unstack_idx) expected = DataFrame( expected_values, columns=expected_columns, index=expected_index ) tm.assert_frame_equal(result, expected) def test_unstack_preserve_dtypes(self): # Checks fix for #11847 df = DataFrame( { "state": ["IL", "MI", "NC"], "index": ["a", "b", "c"], "some_categories": Series(["a", "b", "c"]).astype("category"), "A": np.random.rand(3), "B": 1, "C": "foo", "D": pd.Timestamp("20010102"), "E": Series([1.0, 50.0, 100.0]).astype("float32"), "F": Series([3.0, 4.0, 5.0]).astype("float64"), "G": False, "H": Series([1, 200, 923442]).astype("int8"), } ) def unstack_and_compare(df, column_name): unstacked1 = df.unstack([column_name]) unstacked2 = df.unstack(column_name) tm.assert_frame_equal(unstacked1, unstacked2) df1 = df.set_index(["state", "index"]) unstack_and_compare(df1, "index") df1 = df.set_index(["state", "some_categories"]) unstack_and_compare(df1, "some_categories") df1 = df.set_index(["F", "C"]) unstack_and_compare(df1, "F") df1 = df.set_index(["G", "B", "state"]) unstack_and_compare(df1, "B") df1 = df.set_index(["E", "A"]) unstack_and_compare(df1, "E") df1 = df.set_index(["state", "index"]) s = df1["A"] unstack_and_compare(s, "index") def test_stack_ints(self): columns = MultiIndex.from_tuples(list(itertools.product(range(3), repeat=3))) df = DataFrame(np.random.randn(30, 27), columns=columns) tm.assert_frame_equal(df.stack(level=[1, 2]), df.stack(level=1).stack(level=1)) tm.assert_frame_equal( df.stack(level=[-2, -1]), df.stack(level=1).stack(level=1) ) df_named = df.copy() return_value = df_named.columns.set_names(range(3), inplace=True) assert return_value is None tm.assert_frame_equal( df_named.stack(level=[1, 2]), df_named.stack(level=1).stack(level=1) ) def test_stack_mixed_levels(self): columns = MultiIndex.from_tuples( [ ("A", "cat", "long"), ("B", "cat", "long"), ("A", "dog", "short"), ("B", "dog", "short"), ], names=["exp", "animal", "hair_length"], ) df = DataFrame(np.random.randn(4, 4), columns=columns) animal_hair_stacked = df.stack(level=["animal", "hair_length"]) exp_hair_stacked = df.stack(level=["exp", "hair_length"]) # GH #8584: Need to check that stacking works when a number # is passed that is both a level name and in the range of # the level numbers df2 = df.copy() df2.columns.names = ["exp", "animal", 1] tm.assert_frame_equal( df2.stack(level=["animal", 1]), animal_hair_stacked, check_names=False ) tm.assert_frame_equal( df2.stack(level=["exp", 1]), exp_hair_stacked, check_names=False ) # When mixed types are passed and the ints are not level # names, raise msg = ( "level should contain all level names or all level numbers, not " "a mixture of the two" ) with pytest.raises(ValueError, match=msg): df2.stack(level=["animal", 0]) # GH #8584: Having 0 in the level names could raise a # strange error about lexsort depth df3 = df.copy() df3.columns.names = ["exp", "animal", 0] tm.assert_frame_equal( df3.stack(level=["animal", 0]), animal_hair_stacked, check_names=False ) def test_stack_int_level_names(self): columns = MultiIndex.from_tuples( [ ("A", "cat", "long"), ("B", "cat", "long"), ("A", "dog", "short"), ("B", "dog", "short"), ], names=["exp", "animal", "hair_length"], ) df = DataFrame(np.random.randn(4, 4), columns=columns) exp_animal_stacked = df.stack(level=["exp", "animal"]) animal_hair_stacked = df.stack(level=["animal", "hair_length"]) exp_hair_stacked = df.stack(level=["exp", "hair_length"]) df2 = df.copy() df2.columns.names = [0, 1, 2] tm.assert_frame_equal( df2.stack(level=[1, 2]), animal_hair_stacked, check_names=False ) tm.assert_frame_equal( df2.stack(level=[0, 1]), exp_animal_stacked, check_names=False ) tm.assert_frame_equal( df2.stack(level=[0, 2]), exp_hair_stacked, check_names=False ) # Out-of-order int column names df3 = df.copy() df3.columns.names = [2, 0, 1] tm.assert_frame_equal( df3.stack(level=[0, 1]), animal_hair_stacked, check_names=False ) tm.assert_frame_equal( df3.stack(level=[2, 0]), exp_animal_stacked, check_names=False ) tm.assert_frame_equal( df3.stack(level=[2, 1]), exp_hair_stacked, check_names=False ) def test_unstack_bool(self): df = DataFrame( [False, False], index=MultiIndex.from_arrays([["a", "b"], ["c", "l"]]), columns=["col"], ) rs = df.unstack() xp = DataFrame( np.array([[False, np.nan], [np.nan, False]], dtype=object), index=["a", "b"], columns=MultiIndex.from_arrays([["col", "col"], ["c", "l"]]), ) tm.assert_frame_equal(rs, xp) def test_unstack_level_binding(self): # GH9856 mi = MultiIndex( levels=[["foo", "bar"], ["one", "two"], ["a", "b"]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [1, 0, 1, 0]], names=["first", "second", "third"], ) s = Series(0, index=mi) result = s.unstack([1, 2]).stack(0) expected_mi = MultiIndex( levels=[["foo", "bar"], ["one", "two"]], codes=[[0, 0, 1, 1], [0, 1, 0, 1]], names=["first", "second"], ) expected = DataFrame( np.array( [[np.nan, 0], [0, np.nan], [np.nan, 0], [0, np.nan]], dtype=np.float64 ), index=expected_mi, columns=Index(["a", "b"], name="third"), ) tm.assert_frame_equal(result, expected) def test_unstack_to_series(self, float_frame): # check reversibility data = float_frame.unstack() assert isinstance(data, Series) undo = data.unstack().T tm.assert_frame_equal(undo, float_frame) # check NA handling data = DataFrame({"x": [1, 2, np.NaN], "y": [3.0, 4, np.NaN]}) data.index = Index(["a", "b", "c"]) result = data.unstack() midx = MultiIndex( levels=[["x", "y"], ["a", "b", "c"]], codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]], ) expected = Series([1, 2, np.NaN, 3, 4, np.NaN], index=midx) tm.assert_series_equal(result, expected) # check composability of unstack old_data = data.copy() for _ in range(4): data = data.unstack() tm.assert_frame_equal(old_data, data) def test_unstack_dtypes(self): # GH 2929 rows = [[1, 1, 3, 4], [1, 2, 3, 4], [2, 1, 3, 4], [2, 2, 3, 4]] df = DataFrame(rows, columns=list("ABCD")) result = df.dtypes expected = Series([np.dtype("int64")] * 4, index=list("ABCD")) tm.assert_series_equal(result, expected) # single dtype df2 = df.set_index(["A", "B"]) df3 = df2.unstack("B") result = df3.dtypes expected = Series( [np.dtype("int64")] * 4, index=MultiIndex.from_arrays( [["C", "C", "D", "D"], [1, 2, 1, 2]], names=(None, "B") ), ) tm.assert_series_equal(result, expected) # mixed df2 = df.set_index(["A", "B"]) df2["C"] = 3.0 df3 = df2.unstack("B") result = df3.dtypes expected = Series( [np.dtype("float64")] * 2 + [np.dtype("int64")] * 2, index=MultiIndex.from_arrays( [["C", "C", "D", "D"], [1, 2, 1, 2]], names=(None, "B") ), ) tm.assert_series_equal(result, expected) df2["D"] = "foo" df3 = df2.unstack("B") result = df3.dtypes expected = Series( [np.dtype("float64")] * 2 + [np.dtype("object")] * 2, index=MultiIndex.from_arrays( [["C", "C", "D", "D"], [1, 2, 1, 2]], names=(None, "B") ), ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "c, d", ( (np.zeros(5), np.zeros(5)), (np.arange(5, dtype="f8"), np.arange(5, 10, dtype="f8")), ), ) def test_unstack_dtypes_mixed_date(self, c, d): # GH7405 df = DataFrame( { "A": ["a"] * 5, "C": c, "D": d, "B": date_range("2012-01-01", periods=5), } ) right = df.iloc[:3].copy(deep=True) df = df.set_index(["A", "B"]) df["D"] = df["D"].astype("int64") left = df.iloc[:3].unstack(0) right = right.set_index(["A", "B"]).unstack(0) right[("D", "a")] = right[("D", "a")].astype("int64") assert left.shape == (3, 2) tm.assert_frame_equal(left, right) def test_unstack_non_unique_index_names(self): idx = MultiIndex.from_tuples([("a", "b"), ("c", "d")], names=["c1", "c1"]) df = DataFrame([1, 2], index=idx) msg = "The name c1 occurs multiple times, use a level number" with pytest.raises(ValueError, match=msg): df.unstack("c1") with pytest.raises(ValueError, match=msg): df.T.stack("c1") def test_unstack_unused_levels(self): # GH 17845: unused codes in index make unstack() cast int to float idx = MultiIndex.from_product([["a"], ["A", "B", "C", "D"]])[:-1] df = DataFrame([[1, 0]] * 3, index=idx) result = df.unstack() exp_col = MultiIndex.from_product([[0, 1], ["A", "B", "C"]]) expected = DataFrame([[1, 1, 1, 0, 0, 0]], index=["a"], columns=exp_col) tm.assert_frame_equal(result, expected) assert (result.columns.levels[1] == idx.levels[1]).all() # Unused items on both levels levels = [[0, 1, 7], [0, 1, 2, 3]] codes = [[0, 0, 1, 1], [0, 2, 0, 2]] idx = MultiIndex(levels, codes) block = np.arange(4).reshape(2, 2) df = DataFrame(np.concatenate([block, block + 4]), index=idx) result = df.unstack() expected = DataFrame( np.concatenate([block * 2, block * 2 + 1], axis=1), columns=idx ) tm.assert_frame_equal(result, expected) assert (result.columns.levels[1] == idx.levels[1]).all() @pytest.mark.parametrize( "level, idces, col_level, idx_level", ( (0, [13, 16, 6, 9, 2, 5, 8, 11], [np.nan, "a", 2], [np.nan, 5, 1]), (1, [8, 11, 1, 4, 12, 15, 13, 16], [np.nan, 5, 1], [np.nan, "a", 2]), ), ) def test_unstack_unused_levels_mixed_with_nan( self, level, idces, col_level, idx_level ): # With mixed dtype and NaN levels = [["a", 2, "c"], [1, 3, 5, 7]] codes = [[0, -1, 1, 1], [0, 2, -1, 2]] idx = MultiIndex(levels, codes) data = np.arange(8) df = DataFrame(data.reshape(4, 2), index=idx) result = df.unstack(level=level) exp_data = np.zeros(18) * np.nan exp_data[idces] = data cols = MultiIndex.from_product([[0, 1], col_level]) expected = DataFrame(exp_data.reshape(3, 6), index=idx_level, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("cols", [["A", "C"], slice(None)]) def test_unstack_unused_level(self, cols): # GH 18562 : unused codes on the unstacked level df = DataFrame([[2010, "a", "I"], [2011, "b", "II"]], columns=["A", "B", "C"]) ind = df.set_index(["A", "B", "C"], drop=False) selection = ind.loc[(slice(None), slice(None), "I"), cols] result = selection.unstack() expected = ind.iloc[[0]][cols] expected.columns = MultiIndex.from_product( [expected.columns, ["I"]], names=[None, "C"] ) expected.index = expected.index.droplevel("C") tm.assert_frame_equal(result, expected) def test_unstack_long_index(self): # PH 32624: Error when using a lot of indices to unstack. # The error occurred only, if a lot of indices are used. df = DataFrame( [[1]], columns=MultiIndex.from_tuples([[0]], names=["c1"]), index=MultiIndex.from_tuples( [[0, 0, 1, 0, 0, 0, 1]], names=["i1", "i2", "i3", "i4", "i5", "i6", "i7"], ), ) result = df.unstack(["i2", "i3", "i4", "i5", "i6", "i7"]) expected = DataFrame( [[1]], columns=MultiIndex.from_tuples( [[0, 0, 1, 0, 0, 0, 1]], names=["c1", "i2", "i3", "i4", "i5", "i6", "i7"], ), index=Index([0], name="i1"), ) tm.assert_frame_equal(result, expected) def test_unstack_multi_level_cols(self): # PH 24729: Unstack a df with multi level columns df = DataFrame( [[0.0, 0.0], [0.0, 0.0]], columns=MultiIndex.from_tuples( [["B", "C"], ["B", "D"]], names=["c1", "c2"] ), index=MultiIndex.from_tuples( [[10, 20, 30], [10, 20, 40]], names=["i1", "i2", "i3"] ), ) assert df.unstack(["i2", "i1"]).columns.names[-2:] == ["i2", "i1"] def test_unstack_multi_level_rows_and_cols(self): # PH 28306: Unstack df with multi level cols and rows df = DataFrame( [[1, 2], [3, 4], [-1, -2], [-3, -4]], columns=MultiIndex.from_tuples([["a", "b", "c"], ["d", "e", "f"]]), index=MultiIndex.from_tuples( [ ["m1", "P3", 222], ["m1", "A5", 111], ["m2", "P3", 222], ["m2", "A5", 111], ], names=["i1", "i2", "i3"], ), ) result = df.unstack(["i3", "i2"]) expected = df.unstack(["i3"]).unstack(["i2"]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("idx", [("jim", "joe"), ("joe", "jim")]) @pytest.mark.parametrize("lev", list(range(2))) def test_unstack_nan_index1(self, idx, lev): # GH7466 def cast(val): val_str = "" if val != val else val return f"{val_str:1}" df = DataFrame( { "jim": ["a", "b", np.nan, "d"], "joe": ["w", "x", "y", "z"], "jolie": ["a.w", "b.x", " .y", "d.z"], } ) left = df.set_index(["jim", "joe"]).unstack()["jolie"] right = df.set_index(["joe", "jim"]).unstack()["jolie"].T tm.assert_frame_equal(left, right) mi = df.set_index(list(idx)) udf = mi.unstack(level=lev) assert udf.notna().values.sum() == len(df) mk_list = lambda a: list(a) if isinstance(a, tuple) else [a] rows, cols = udf["jolie"].notna().values.nonzero() for i, j in zip(rows, cols): left = sorted(udf["jolie"].iloc[i, j].split(".")) right = mk_list(udf["jolie"].index[i]) + mk_list(udf["jolie"].columns[j]) right = sorted(map(cast, right)) assert left == right @pytest.mark.parametrize("idx", itertools.permutations(["1st", "2nd", "3rd"])) @pytest.mark.parametrize("lev", list(range(3))) @pytest.mark.parametrize("col", ["4th", "5th"]) def test_unstack_nan_index_repeats(self, idx, lev, col): def cast(val): val_str = "" if val != val else val return f"{val_str:1}" df = DataFrame( { "1st": ["d"] * 3 + [np.nan] * 5 + ["a"] * 2 + ["c"] * 3 + ["e"] * 2 + ["b"] * 5, "2nd": ["y"] * 2 + ["w"] * 3 + [np.nan] * 3 + ["z"] * 4 + [np.nan] * 3 + ["x"] * 3 + [np.nan] * 2, "3rd": [ 67, 39, 53, 72, 57, 80, 31, 18, 11, 30, 59, 50, 62, 59, 76, 52, 14, 53, 60, 51, ], } ) df["4th"], df["5th"] = ( df.apply(lambda r: ".".join(map(cast, r)), axis=1), df.apply(lambda r: ".".join(map(cast, r.iloc[::-1])), axis=1), ) mi = df.set_index(list(idx)) udf = mi.unstack(level=lev) assert udf.notna().values.sum() == 2 * len(df) mk_list = lambda a: list(a) if isinstance(a, tuple) else [a] rows, cols = udf[col].notna().values.nonzero() for i, j in zip(rows, cols): left = sorted(udf[col].iloc[i, j].split(".")) right = mk_list(udf[col].index[i]) + mk_list(udf[col].columns[j]) right = sorted(map(cast, right)) assert left == right def test_unstack_nan_index2(self): # GH7403 df = DataFrame({"A": list("aaaabbbb"), "B": range(8), "C": range(8)}) df.iloc[3, 1] = np.NaN left = df.set_index(["A", "B"]).unstack(0) vals = [ [3, 0, 1, 2, np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan, 4, 5, 6, 7], ] vals = list(map(list, zip(*vals))) idx = Index([np.nan, 0, 1, 2, 4, 5, 6, 7], name="B") cols = MultiIndex( levels=[["C"], ["a", "b"]], codes=[[0, 0], [0, 1]], names=[None, "A"] ) right = DataFrame(vals, columns=cols, index=idx) tm.assert_frame_equal(left, right) df = DataFrame({"A": list("aaaabbbb"), "B": list(range(4)) * 2, "C": range(8)}) df.iloc[2, 1] = np.NaN left = df.set_index(["A", "B"]).unstack(0) vals = [[2, np.nan], [0, 4], [1, 5], [np.nan, 6], [3, 7]] cols = MultiIndex( levels=[["C"], ["a", "b"]], codes=[[0, 0], [0, 1]], names=[None, "A"] ) idx = Index([np.nan, 0, 1, 2, 3], name="B") right = DataFrame(vals, columns=cols, index=idx) tm.assert_frame_equal(left, right) df = DataFrame({"A": list("aaaabbbb"), "B": list(range(4)) * 2, "C": range(8)}) df.iloc[3, 1] = np.NaN left = df.set_index(["A", "B"]).unstack(0) vals = [[3, np.nan], [0, 4], [1, 5], [2, 6], [np.nan, 7]] cols = MultiIndex( levels=[["C"], ["a", "b"]], codes=[[0, 0], [0, 1]], names=[None, "A"] ) idx = Index([np.nan, 0, 1, 2, 3], name="B") right = DataFrame(vals, columns=cols, index=idx) tm.assert_frame_equal(left, right) def test_unstack_nan_index3(self, using_array_manager): # GH7401 df = DataFrame( { "A": list("aaaaabbbbb"), "B": (date_range("2012-01-01", periods=5).tolist() * 2), "C": np.arange(10), } ) df.iloc[3, 1] = np.NaN left = df.set_index(["A", "B"]).unstack() vals = np.array([[3, 0, 1, 2, np.nan, 4], [np.nan, 5, 6, 7, 8, 9]]) idx = Index(["a", "b"], name="A") cols = MultiIndex( levels=[["C"], date_range("2012-01-01", periods=5)], codes=[[0, 0, 0, 0, 0, 0], [-1, 0, 1, 2, 3, 4]], names=[None, "B"], ) right = DataFrame(vals, columns=cols, index=idx) if using_array_manager: # INFO(ArrayManager) with ArrayManager preserve dtype where possible cols = right.columns[[1, 2, 3, 5]] right[cols] = right[cols].astype(df["C"].dtype) tm.assert_frame_equal(left, right) def test_unstack_nan_index4(self): # GH4862 vals = [ ["Hg", np.nan, np.nan, 680585148], ["U", 0.0, np.nan, 680585148], ["Pb", 7.07e-06, np.nan, 680585148], ["Sn", 2.3614e-05, 0.0133, 680607017], ["Ag", 0.0, 0.0133, 680607017], ["Hg", -0.00015, 0.0133, 680607017], ] df = DataFrame( vals, columns=["agent", "change", "dosage", "s_id"], index=[17263, 17264, 17265, 17266, 17267, 17268], ) left = df.copy().set_index(["s_id", "dosage", "agent"]).unstack() vals = [ [np.nan, np.nan, 7.07e-06, np.nan, 0.0], [0.0, -0.00015, np.nan, 2.3614e-05, np.nan], ] idx = MultiIndex( levels=[[680585148, 680607017], [0.0133]], codes=[[0, 1], [-1, 0]], names=["s_id", "dosage"], ) cols = MultiIndex( levels=[["change"], ["Ag", "Hg", "Pb", "Sn", "U"]], codes=[[0, 0, 0, 0, 0], [0, 1, 2, 3, 4]], names=[None, "agent"], ) right = DataFrame(vals, columns=cols, index=idx) tm.assert_frame_equal(left, right) left = df.loc[17264:].copy().set_index(["s_id", "dosage", "agent"]) tm.assert_frame_equal(left.unstack(), right) def test_unstack_nan_index5(self): # GH9497 - multiple unstack with nulls df = DataFrame( { "1st": [1, 2, 1, 2, 1, 2], "2nd": date_range("2014-02-01", periods=6, freq="D"), "jim": 100 + np.arange(6), "joe": (np.random.randn(6) * 10).round(2), } ) df["3rd"] = df["2nd"] - pd.Timestamp("2014-02-02") df.loc[1, "2nd"] = df.loc[3, "2nd"] = np.nan df.loc[1, "3rd"] = df.loc[4, "3rd"] = np.nan left = df.set_index(["1st", "2nd", "3rd"]).unstack(["2nd", "3rd"]) assert left.notna().values.sum() == 2 * len(df) for col in ["jim", "joe"]: for _, r in df.iterrows(): key = r["1st"], (col, r["2nd"], r["3rd"]) assert r[col] == left.loc[key] def test_stack_datetime_column_multiIndex(self): # GH 8039 t = datetime(2014, 1, 1) df = DataFrame([1, 2, 3, 4], columns=MultiIndex.from_tuples([(t, "A", "B")])) result = df.stack() eidx = MultiIndex.from_product([(0, 1, 2, 3), ("B",)]) ecols = MultiIndex.from_tuples([(t, "A")]) expected = DataFrame([1, 2, 3, 4], index=eidx, columns=ecols) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "multiindex_columns", [ [0, 1, 2, 3, 4], [0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 2], [1, 2, 3], [2, 3, 4], [0, 1], [0, 2], [0, 3], [0], [2], [4], [4, 3, 2, 1, 0], [3, 2, 1, 0], [4, 2, 1, 0], [2, 1, 0], [3, 2, 1], [4, 3, 2], [1, 0], [2, 0], [3, 0], ], ) @pytest.mark.parametrize("level", (-1, 0, 1, [0, 1], [1, 0])) def test_stack_partial_multiIndex(self, multiindex_columns, level): # GH 8844 full_multiindex = MultiIndex.from_tuples( [("B", "x"), ("B", "z"), ("A", "y"), ("C", "x"), ("C", "u")], names=["Upper", "Lower"], ) multiindex = full_multiindex[multiindex_columns] df = DataFrame( np.arange(3 * len(multiindex)).reshape(3, len(multiindex)), columns=multiindex, ) result = df.stack(level=level, dropna=False) if isinstance(level, int): # Stacking a single level should not make any all-NaN rows, # so df.stack(level=level, dropna=False) should be the same # as df.stack(level=level, dropna=True). expected = df.stack(level=level, dropna=True) if isinstance(expected, Series): tm.assert_series_equal(result, expected) else: tm.assert_frame_equal(result, expected) df.columns = MultiIndex.from_tuples( df.columns.to_numpy(), names=df.columns.names ) expected = df.stack(level=level, dropna=False) if isinstance(expected, Series): tm.assert_series_equal(result, expected) else: tm.assert_frame_equal(result, expected) def test_stack_full_multiIndex(self): # GH 8844 full_multiindex = MultiIndex.from_tuples( [("B", "x"), ("B", "z"), ("A", "y"), ("C", "x"), ("C", "u")], names=["Upper", "Lower"], ) df = DataFrame(np.arange(6).reshape(2, 3), columns=full_multiindex[[0, 1, 3]]) result = df.stack(dropna=False) expected = DataFrame( [[0, 2], [1, np.nan], [3, 5], [4, np.nan]], index=MultiIndex( levels=[[0, 1], ["u", "x", "y", "z"]], codes=[[0, 0, 1, 1], [1, 3, 1, 3]], names=[None, "Lower"], ), columns=Index(["B", "C"], name="Upper"), ) expected["B"] = expected["B"].astype(df.dtypes[0]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("ordered", [False, True]) @pytest.mark.parametrize("labels", [list("yxz"), list("yxy")]) def test_stack_preserve_categorical_dtype(self, ordered, labels): # GH13854 cidx = pd.CategoricalIndex(labels, categories=list("xyz"), ordered=ordered) df = DataFrame([[10, 11, 12]], columns=cidx) result = df.stack() # `MultiIndex.from_product` preserves categorical dtype - # it's tested elsewhere. midx = MultiIndex.from_product([df.index, cidx]) expected = Series([10, 11, 12], index=midx) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("ordered", [False, True]) @pytest.mark.parametrize( "labels,data", [ (list("xyz"), [10, 11, 12, 13, 14, 15]), (list("zyx"), [14, 15, 12, 13, 10, 11]), ], ) def test_stack_multi_preserve_categorical_dtype(self, ordered, labels, data): # GH-36991 cidx = pd.CategoricalIndex(labels, categories=sorted(labels), ordered=ordered) cidx2 = pd.CategoricalIndex(["u", "v"], ordered=ordered) midx = MultiIndex.from_product([cidx, cidx2]) df = DataFrame([sorted(data)], columns=midx) result = df.stack([0, 1]) s_cidx = pd.CategoricalIndex(sorted(labels), ordered=ordered) expected = Series(data, index=MultiIndex.from_product([[0], s_cidx, cidx2])) tm.assert_series_equal(result, expected) def test_stack_preserve_categorical_dtype_values(self): # GH-23077 cat = pd.Categorical(["a", "a", "b", "c"]) df = DataFrame({"A": cat, "B": cat}) result = df.stack() index = MultiIndex.from_product([[0, 1, 2, 3], ["A", "B"]]) expected = Series( pd.Categorical(["a", "a", "a", "a", "b", "b", "c", "c"]), index=index ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "index, columns", [ ([0, 0, 1, 1], MultiIndex.from_product([[1, 2], ["a", "b"]])), ([0, 0, 2, 3], MultiIndex.from_product([[1, 2], ["a", "b"]])), ([0, 1, 2, 3], MultiIndex.from_product([[1, 2], ["a", "b"]])), ], ) def test_stack_multi_columns_non_unique_index(self, index, columns): # GH-28301 df = DataFrame(index=index, columns=columns).fillna(1) stacked = df.stack() new_index = MultiIndex.from_tuples(stacked.index.to_numpy()) expected = DataFrame( stacked.to_numpy(), index=new_index, columns=stacked.columns ) tm.assert_frame_equal(stacked, expected) stacked_codes = np.asarray(stacked.index.codes) expected_codes = np.asarray(new_index.codes) tm.assert_numpy_array_equal(stacked_codes, expected_codes) @pytest.mark.parametrize("level", [0, 1]) def test_unstack_mixed_extension_types(self, level): index = MultiIndex.from_tuples([("A", 0), ("A", 1), ("B", 1)], names=["a", "b"]) df = DataFrame( { "A": pd.array([0, 1, None], dtype="Int64"), "B": pd.Categorical(["a", "a", "b"]), }, index=index, ) result = df.unstack(level=level) expected = df.astype(object).unstack(level=level) expected_dtypes = Series( [df.A.dtype] * 2 + [df.B.dtype] * 2, index=result.columns ) tm.assert_series_equal(result.dtypes, expected_dtypes) tm.assert_frame_equal(result.astype(object), expected) @pytest.mark.parametrize("level", [0, "baz"]) def test_unstack_swaplevel_sortlevel(self, level): # GH 20994 mi = MultiIndex.from_product([[0], ["d", "c"]], names=["bar", "baz"]) df = DataFrame([[0, 2], [1, 3]], index=mi, columns=["B", "A"]) df.columns.name = "foo" expected = DataFrame( [[3, 1, 2, 0]], columns=MultiIndex.from_tuples( [("c", "A"), ("c", "B"), ("d", "A"), ("d", "B")], names=["baz", "foo"] ), ) expected.index.name = "bar" result = df.unstack().swaplevel(axis=1).sort_index(axis=1, level=level) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_object(): # GH12815 Test unstacking with object. data = Series(["a", "b", "c", "a"], dtype="object") data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) # By default missing values will be NaN result = data.unstack() expected = DataFrame( {"a": ["a", np.nan, "a"], "b": ["b", "c", np.nan]}, index=list("xyz") ) tm.assert_frame_equal(result, expected) # Fill with any value replaces missing values as expected result = data.unstack(fill_value="d") expected = DataFrame( {"a": ["a", "d", "a"], "b": ["b", "c", "d"]}, index=list("xyz") ) tm.assert_frame_equal(result, expected) def test_unstack_timezone_aware_values(): # GH 18338 df = DataFrame( { "timestamp": [pd.Timestamp("2017-08-27 01:00:00.709949+0000", tz="UTC")], "a": ["a"], "b": ["b"], "c": ["c"], }, columns=["timestamp", "a", "b", "c"], ) result = df.set_index(["a", "b"]).unstack() expected = DataFrame( [[pd.Timestamp("2017-08-27 01:00:00.709949+0000", tz="UTC"), "c"]], index=Index(["a"], name="a"), columns=MultiIndex( levels=[["timestamp", "c"], ["b"]], codes=[[0, 1], [0, 0]], names=[None, "b"], ), ) tm.assert_frame_equal(result, expected) def test_stack_timezone_aware_values(): # GH 19420 ts = date_range(freq="D", start="20180101", end="20180103", tz="America/New_York") df = DataFrame({"A": ts}, index=["a", "b", "c"]) result = df.stack() expected = Series( ts, index=MultiIndex(levels=[["a", "b", "c"], ["A"]], codes=[[0, 1, 2], [0, 0, 0]]), ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dropna", [True, False]) def test_stack_empty_frame(dropna): # GH 36113 expected = Series(index=MultiIndex([[], []], [[], []]), dtype=np.float64) result = DataFrame(dtype=np.float64).stack(dropna=dropna) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dropna", [True, False]) @pytest.mark.parametrize("fill_value", [None, 0]) def test_stack_unstack_empty_frame(dropna, fill_value): # GH 36113 result = ( DataFrame(dtype=np.int64).stack(dropna=dropna).unstack(fill_value=fill_value) ) expected = DataFrame(dtype=np.int64) tm.assert_frame_equal(result, expected) def test_unstack_single_index_series(): # GH 36113 msg = r"index must be a MultiIndex to unstack.*" with pytest.raises(ValueError, match=msg): Series(dtype=np.int64).unstack() def test_unstacking_multi_index_df(): # see gh-30740 df = DataFrame( { "name": ["Alice", "Bob"], "score": [9.5, 8], "employed": [False, True], "kids": [0, 0], "gender": ["female", "male"], } ) df = df.set_index(["name", "employed", "kids", "gender"]) df = df.unstack(["gender"], fill_value=0) expected = df.unstack("employed", fill_value=0).unstack("kids", fill_value=0) result = df.unstack(["employed", "kids"], fill_value=0) expected = DataFrame( [[9.5, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 8.0]], index=Index(["Alice", "Bob"], name="name"), columns=MultiIndex.from_tuples( [ ("score", "female", False, 0), ("score", "female", True, 0), ("score", "male", False, 0), ("score", "male", True, 0), ], names=[None, "gender", "employed", "kids"], ), ) tm.assert_frame_equal(result, expected) def test_stack_positional_level_duplicate_column_names(): # https://github.com/pandas-dev/pandas/issues/36353 columns = MultiIndex.from_product([("x", "y"), ("y", "z")], names=["a", "a"]) df = DataFrame([[1, 1, 1, 1]], columns=columns) result = df.stack(0) new_columns = Index(["y", "z"], name="a") new_index = MultiIndex.from_tuples([(0, "x"), (0, "y")], names=[None, "a"]) expected = DataFrame([[1, 1], [1, 1]], index=new_index, columns=new_columns) tm.assert_frame_equal(result, expected) def test_unstack_non_slice_like_blocks(using_array_manager): # Case where the mgr_locs of a DataFrame's underlying blocks are not slice-like mi = MultiIndex.from_product([range(5), ["A", "B", "C"]]) df = DataFrame(np.random.randn(15, 4), index=mi) df[1] = df[1].astype(np.int64) if not using_array_manager: assert any(not x.mgr_locs.is_slice_like for x in df._mgr.blocks) res = df.unstack() expected = pd.concat([df[n].unstack() for n in range(4)], keys=range(4), axis=1) tm.assert_frame_equal(res, expected) class TestStackUnstackMultiLevel: def test_unstack(self, multiindex_year_month_day_dataframe_random_data): # just check that it works for now ymd = multiindex_year_month_day_dataframe_random_data unstacked = ymd.unstack() unstacked.unstack() # test that ints work ymd.astype(int).unstack() # test that int32 work ymd.astype(np.int32).unstack() @pytest.mark.parametrize( "result_rows,result_columns,index_product,expected_row", [ ( [[1, 1, None, None, 30.0, None], [2, 2, None, None, 30.0, None]], ["ix1", "ix2", "col1", "col2", "col3", "col4"], 2, [None, None, 30.0, None], ), ( [[1, 1, None, None, 30.0], [2, 2, None, None, 30.0]], ["ix1", "ix2", "col1", "col2", "col3"], 2, [None, None, 30.0], ), ( [[1, 1, None, None, 30.0], [2, None, None, None, 30.0]], ["ix1", "ix2", "col1", "col2", "col3"], None, [None, None, 30.0], ), ], ) def test_unstack_partial( self, result_rows, result_columns, index_product, expected_row ): # check for regressions on this issue: # https://github.com/pandas-dev/pandas/issues/19351 # make sure DataFrame.unstack() works when its run on a subset of the DataFrame # and the Index levels contain values that are not present in the subset result = DataFrame(result_rows, columns=result_columns).set_index( ["ix1", "ix2"] ) result = result.iloc[1:2].unstack("ix2") expected = DataFrame( [expected_row], columns=MultiIndex.from_product( [result_columns[2:], [index_product]], names=[None, "ix2"] ), index=Index([2], name="ix1"), ) tm.assert_frame_equal(result, expected) def test_unstack_multiple_no_empty_columns(self): index = MultiIndex.from_tuples( [(0, "foo", 0), (0, "bar", 0), (1, "baz", 1), (1, "qux", 1)] ) s = Series(np.random.randn(4), index=index) unstacked = s.unstack([1, 2]) expected = unstacked.dropna(axis=1, how="all") tm.assert_frame_equal(unstacked, expected) def test_stack(self, multiindex_year_month_day_dataframe_random_data): ymd = multiindex_year_month_day_dataframe_random_data # regular roundtrip unstacked = ymd.unstack() restacked = unstacked.stack() tm.assert_frame_equal(restacked, ymd) unlexsorted = ymd.sort_index(level=2) unstacked = unlexsorted.unstack(2) restacked = unstacked.stack() tm.assert_frame_equal(restacked.sort_index(level=0), ymd) unlexsorted = unlexsorted[::-1] unstacked = unlexsorted.unstack(1) restacked = unstacked.stack().swaplevel(1, 2) tm.assert_frame_equal(restacked.sort_index(level=0), ymd) unlexsorted = unlexsorted.swaplevel(0, 1) unstacked = unlexsorted.unstack(0).swaplevel(0, 1, axis=1) restacked = unstacked.stack(0).swaplevel(1, 2) tm.assert_frame_equal(restacked.sort_index(level=0), ymd) # columns unsorted unstacked = ymd.unstack() unstacked = unstacked.sort_index(axis=1, ascending=False) restacked = unstacked.stack() tm.assert_frame_equal(restacked, ymd) # more than 2 levels in the columns unstacked = ymd.unstack(1).unstack(1) result = unstacked.stack(1) expected = ymd.unstack() tm.assert_frame_equal(result, expected) result = unstacked.stack(2) expected = ymd.unstack(1) tm.assert_frame_equal(result, expected) result = unstacked.stack(0) expected = ymd.stack().unstack(1).unstack(1) tm.assert_frame_equal(result, expected) # not all levels present in each echelon unstacked = ymd.unstack(2).loc[:, ::3] stacked = unstacked.stack().stack() ymd_stacked = ymd.stack() tm.assert_series_equal(stacked, ymd_stacked.reindex(stacked.index)) # stack with negative number result = ymd.unstack(0).stack(-2) expected = ymd.unstack(0).stack(0) tm.assert_equal(result, expected) @pytest.mark.parametrize( "idx, columns, exp_idx", [ [ list("abab"), ["1st", "2nd", "3rd"], MultiIndex( levels=[["a", "b"], ["1st", "2nd", "3rd"]], codes=[ np.tile(np.arange(2).repeat(3), 2), np.tile(np.arange(3), 4), ], ), ], [ list("abab"), ["1st", "2nd", "1st"], MultiIndex( levels=[["a", "b"], ["1st", "2nd"]], codes=[np.tile(np.arange(2).repeat(3), 2), np.tile([0, 1, 0], 4)], ), ], [ MultiIndex.from_tuples((("a", 2), ("b", 1), ("a", 1), ("b", 2))), ["1st", "2nd", "1st"], MultiIndex( levels=[["a", "b"], [1, 2], ["1st", "2nd"]], codes=[ np.tile(np.arange(2).repeat(3), 2), np.repeat([1, 0, 1], [3, 6, 3]), np.tile([0, 1, 0], 4), ], ), ], ], ) def test_stack_duplicate_index(self, idx, columns, exp_idx): # GH10417 df = DataFrame( np.arange(12).reshape(4, 3), index=idx, columns=columns, ) result = df.stack() expected = Series(np.arange(12), index=exp_idx) tm.assert_series_equal(result, expected) assert result.index.is_unique is False li, ri = result.index, expected.index tm.assert_index_equal(li, ri) def test_unstack_odd_failure(self): data = """day,time,smoker,sum,len Fri,Dinner,No,8.25,3. Fri,Dinner,Yes,27.03,9 Fri,Lunch,No,3.0,1 Fri,Lunch,Yes,13.68,6 Sat,Dinner,No,139.63,45 Sat,Dinner,Yes,120.77,42 Sun,Dinner,No,180.57,57 Sun,Dinner,Yes,66.82,19 Thu,Dinner,No,3.0,1 Thu,Lunch,No,117.32,44 Thu,Lunch,Yes,51.51,17""" df = pd.read_csv(StringIO(data)).set_index(["day", "time", "smoker"]) # it works, #2100 result = df.unstack(2) recons = result.stack() tm.assert_frame_equal(recons, df) def test_stack_mixed_dtype(self, multiindex_dataframe_random_data): frame = multiindex_dataframe_random_data df = frame.T df["foo", "four"] = "foo" df = df.sort_index(level=1, axis=1) stacked = df.stack() result = df["foo"].stack().sort_index() tm.assert_series_equal(stacked["foo"], result, check_names=False) assert result.name is None assert stacked["bar"].dtype == np.float_ def test_unstack_bug(self): df = DataFrame( { "state": ["naive", "naive", "naive", "active", "active", "active"], "exp": ["a", "b", "b", "b", "a", "a"], "barcode": [1, 2, 3, 4, 1, 3], "v": ["hi", "hi", "bye", "bye", "bye", "peace"], "extra": np.arange(6.0), } ) result = df.groupby(["state", "exp", "barcode", "v"]).apply(len) unstacked = result.unstack() restacked = unstacked.stack() tm.assert_series_equal(restacked, result.reindex(restacked.index).astype(float)) def test_stack_unstack_preserve_names(self, multiindex_dataframe_random_data): frame = multiindex_dataframe_random_data unstacked = frame.unstack() assert unstacked.index.name == "first" assert unstacked.columns.names == ["exp", "second"] restacked = unstacked.stack() assert restacked.index.names == frame.index.names @pytest.mark.parametrize("method", ["stack", "unstack"]) def test_stack_unstack_wrong_level_name( self, method, multiindex_dataframe_random_data ): # GH 18303 - wrong level name should raise frame = multiindex_dataframe_random_data # A DataFrame with flat axes: df = frame.loc["foo"] with pytest.raises(KeyError, match="does not match index name"): getattr(df, method)("mistake") if method == "unstack": # Same on a Series: s = df.iloc[:, 0] with pytest.raises(KeyError, match="does not match index name"): getattr(s, method)("mistake") def test_unstack_level_name(self, multiindex_dataframe_random_data): frame = multiindex_dataframe_random_data result = frame.unstack("second") expected = frame.unstack(level=1) tm.assert_frame_equal(result, expected) def test_stack_level_name(self, multiindex_dataframe_random_data): frame = multiindex_dataframe_random_data unstacked = frame.unstack("second") result = unstacked.stack("exp") expected = frame.unstack().stack(0) tm.assert_frame_equal(result, expected) result = frame.stack("exp") expected = frame.stack() tm.assert_series_equal(result, expected) def test_stack_unstack_multiple( self, multiindex_year_month_day_dataframe_random_data ): ymd = multiindex_year_month_day_dataframe_random_data unstacked = ymd.unstack(["year", "month"]) expected = ymd.unstack("year").unstack("month") tm.assert_frame_equal(unstacked, expected) assert unstacked.columns.names == expected.columns.names # series s = ymd["A"] s_unstacked = s.unstack(["year", "month"]) tm.assert_frame_equal(s_unstacked, expected["A"]) restacked = unstacked.stack(["year", "month"]) restacked = restacked.swaplevel(0, 1).swaplevel(1, 2) restacked = restacked.sort_index(level=0) tm.assert_frame_equal(restacked, ymd) assert restacked.index.names == ymd.index.names # GH #451 unstacked = ymd.unstack([1, 2]) expected = ymd.unstack(1).unstack(1).dropna(axis=1, how="all") tm.assert_frame_equal(unstacked, expected) unstacked = ymd.unstack([2, 1]) expected = ymd.unstack(2).unstack(1).dropna(axis=1, how="all") tm.assert_frame_equal(unstacked, expected.loc[:, unstacked.columns]) def test_stack_names_and_numbers( self, multiindex_year_month_day_dataframe_random_data ): ymd = multiindex_year_month_day_dataframe_random_data unstacked = ymd.unstack(["year", "month"]) # Can't use mixture of names and numbers to stack with pytest.raises(ValueError, match="level should contain"): unstacked.stack([0, "month"]) def test_stack_multiple_out_of_bounds( self, multiindex_year_month_day_dataframe_random_data ): # nlevels == 3 ymd = multiindex_year_month_day_dataframe_random_data unstacked = ymd.unstack(["year", "month"]) with pytest.raises(IndexError, match="Too many levels"): unstacked.stack([2, 3]) with pytest.raises(IndexError, match="not a valid level number"): unstacked.stack([-4, -3]) def test_unstack_period_series(self): # GH4342 idx1 = pd.PeriodIndex( ["2013-01", "2013-01", "2013-02", "2013-02", "2013-03", "2013-03"], freq="M", name="period", ) idx2 = Index(["A", "B"] * 3, name="str") value = [1, 2, 3, 4, 5, 6] idx = MultiIndex.from_arrays([idx1, idx2]) s = Series(value, index=idx) result1 = s.unstack() result2 = s.unstack(level=1) result3 = s.unstack(level=0) e_idx = pd.PeriodIndex( ["2013-01", "2013-02", "2013-03"], freq="M", name="period" ) expected = DataFrame( {"A": [1, 3, 5], "B": [2, 4, 6]}, index=e_idx, columns=["A", "B"] ) expected.columns.name = "str" tm.assert_frame_equal(result1, expected) tm.assert_frame_equal(result2, expected) tm.assert_frame_equal(result3, expected.T) idx1 = pd.PeriodIndex( ["2013-01", "2013-01", "2013-02", "2013-02", "2013-03", "2013-03"], freq="M", name="period1", ) idx2 = pd.PeriodIndex( ["2013-12", "2013-11", "2013-10", "2013-09", "2013-08", "2013-07"], freq="M", name="period2", ) idx = MultiIndex.from_arrays([idx1, idx2]) s = Series(value, index=idx) result1 = s.unstack() result2 = s.unstack(level=1) result3 = s.unstack(level=0) e_idx = pd.PeriodIndex( ["2013-01", "2013-02", "2013-03"], freq="M", name="period1" ) e_cols = pd.PeriodIndex( ["2013-07", "2013-08", "2013-09", "2013-10", "2013-11", "2013-12"], freq="M", name="period2", ) expected = DataFrame( [ [np.nan, np.nan, np.nan, np.nan, 2, 1], [np.nan, np.nan, 4, 3, np.nan, np.nan], [6, 5, np.nan, np.nan, np.nan, np.nan], ], index=e_idx, columns=e_cols, ) tm.assert_frame_equal(result1, expected) tm.assert_frame_equal(result2, expected) tm.assert_frame_equal(result3, expected.T) def test_unstack_period_frame(self): # GH4342 idx1 = pd.PeriodIndex( ["2014-01", "2014-02", "2014-02", "2014-02", "2014-01", "2014-01"], freq="M", name="period1", ) idx2 = pd.PeriodIndex( ["2013-12", "2013-12", "2014-02", "2013-10", "2013-10", "2014-02"], freq="M", name="period2", ) value = {"A": [1, 2, 3, 4, 5, 6], "B": [6, 5, 4, 3, 2, 1]} idx = MultiIndex.from_arrays([idx1, idx2]) df = DataFrame(value, index=idx) result1 = df.unstack() result2 = df.unstack(level=1) result3 = df.unstack(level=0) e_1 = pd.PeriodIndex(["2014-01", "2014-02"], freq="M", name="period1") e_2 = pd.PeriodIndex( ["2013-10", "2013-12", "2014-02", "2013-10", "2013-12", "2014-02"], freq="M", name="period2", ) e_cols = MultiIndex.from_arrays(["A A A B B B".split(), e_2]) expected = DataFrame( [[5, 1, 6, 2, 6, 1], [4, 2, 3, 3, 5, 4]], index=e_1, columns=e_cols ) tm.assert_frame_equal(result1, expected) tm.assert_frame_equal(result2, expected) e_1 = pd.PeriodIndex( ["2014-01", "2014-02", "2014-01", "2014-02"], freq="M", name="period1" ) e_2 = pd.PeriodIndex( ["2013-10", "2013-12", "2014-02"], freq="M", name="period2" ) e_cols = MultiIndex.from_arrays(["A A B B".split(), e_1]) expected = DataFrame( [[5, 4, 2, 3], [1, 2, 6, 5], [6, 3, 1, 4]], index=e_2, columns=e_cols ) tm.assert_frame_equal(result3, expected) def test_stack_multiple_bug(self): # bug when some uniques are not present in the data GH#3170 id_col = ([1] * 3) + ([2] * 3) name = (["a"] * 3) + (["b"] * 3) date = pd.to_datetime(["2013-01-03", "2013-01-04", "2013-01-05"] * 2) var1 = np.random.randint(0, 100, 6) df = DataFrame({"ID": id_col, "NAME": name, "DATE": date, "VAR1": var1}) multi = df.set_index(["DATE", "ID"]) multi.columns.name = "Params" unst = multi.unstack("ID") msg = "The default value of numeric_only" with tm.assert_produces_warning(FutureWarning, match=msg): down = unst.resample("W-THU").mean() rs = down.stack("ID") xp = unst.loc[:, ["VAR1"]].resample("W-THU").mean().stack("ID") xp.columns.name = "Params" tm.assert_frame_equal(rs, xp) def test_stack_dropna(self): # GH#3997 df = DataFrame({"A": ["a1", "a2"], "B": ["b1", "b2"], "C": [1, 1]}) df = df.set_index(["A", "B"]) stacked = df.unstack().stack(dropna=False) assert len(stacked) > len(stacked.dropna()) stacked = df.unstack().stack(dropna=True) tm.assert_frame_equal(stacked, stacked.dropna()) def test_unstack_multiple_hierarchical(self): df = DataFrame( index=[ [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 0, 1], ], columns=[[0, 0, 1, 1], [0, 1, 0, 1]], ) df.index.names = ["a", "b", "c"] df.columns.names = ["d", "e"] # it works! df.unstack(["b", "c"]) def test_unstack_sparse_keyspace(self): # memory problems with naive impl GH#2278 # Generate Long File & Test Pivot NUM_ROWS = 1000 df = DataFrame( { "A": np.random.randint(100, size=NUM_ROWS), "B": np.random.randint(300, size=NUM_ROWS), "C": np.random.randint(-7, 7, size=NUM_ROWS), "D": np.random.randint(-19, 19, size=NUM_ROWS), "E": np.random.randint(3000, size=NUM_ROWS), "F": np.random.randn(NUM_ROWS), } ) idf = df.set_index(["A", "B", "C", "D", "E"]) # it works! is sufficient idf.unstack("E") def test_unstack_unobserved_keys(self): # related to GH#2278 refactoring levels = [[0, 1], [0, 1, 2, 3]] codes = [[0, 0, 1, 1], [0, 2, 0, 2]] index = MultiIndex(levels, codes) df = DataFrame(np.random.randn(4, 2), index=index) result = df.unstack() assert len(result.columns) == 4 recons = result.stack() tm.assert_frame_equal(recons, df) @pytest.mark.slow def test_unstack_number_of_levels_larger_than_int32(self, monkeypatch): # GH#20601 # GH 26314: Change ValueError to PerformanceWarning class MockUnstacker(reshape_lib._Unstacker): def __init__(self, *args, **kwargs) -> None: # __init__ will raise the warning super().__init__(*args, **kwargs) raise Exception("Don't compute final result.") with monkeypatch.context() as m: m.setattr(reshape_lib, "_Unstacker", MockUnstacker) df = DataFrame( np.random.randn(2**16, 2), index=[np.arange(2**16), np.arange(2**16)], ) msg = "The following operation may generate" with tm.assert_produces_warning(PerformanceWarning, match=msg): with pytest.raises(Exception, match="Don't compute final result."): df.unstack() @pytest.mark.parametrize( "levels", itertools.chain.from_iterable( itertools.product(itertools.permutations([0, 1, 2], width), repeat=2) for width in [2, 3] ), ) @pytest.mark.parametrize("stack_lev", range(2)) def test_stack_order_with_unsorted_levels(self, levels, stack_lev): # GH#16323 # deep check for 1-row case columns = MultiIndex(levels=levels, codes=[[0, 0, 1, 1], [0, 1, 0, 1]]) df = DataFrame(columns=columns, data=[range(4)]) df_stacked = df.stack(stack_lev) assert all( df.loc[row, col] == df_stacked.loc[(row, col[stack_lev]), col[1 - stack_lev]] for row in df.index for col in df.columns ) def test_stack_order_with_unsorted_levels_multi_row(self): # GH#16323 # check multi-row case mi = MultiIndex( levels=[["A", "C", "B"], ["B", "A", "C"]], codes=[np.repeat(range(3), 3), np.tile(range(3), 3)], ) df = DataFrame( columns=mi, index=range(5), data=np.arange(5 * len(mi)).reshape(5, -1) ) assert all( df.loc[row, col] == df.stack(0).loc[(row, col[0]), col[1]] for row in df.index for col in df.columns ) def test_stack_unstack_unordered_multiindex(self): # GH# 18265 values = np.arange(5) data = np.vstack( [ [f"b{x}" for x in values], # b0, b1, .. [f"a{x}" for x in values], # a0, a1, .. ] ) df = DataFrame(data.T, columns=["b", "a"]) df.columns.name = "first" second_level_dict = {"x": df} multi_level_df = pd.concat(second_level_dict, axis=1) multi_level_df.columns.names = ["second", "first"] df = multi_level_df.reindex(sorted(multi_level_df.columns), axis=1) result = df.stack(["first", "second"]).unstack(["first", "second"]) expected = DataFrame( [["a0", "b0"], ["a1", "b1"], ["a2", "b2"], ["a3", "b3"], ["a4", "b4"]], index=[0, 1, 2, 3, 4], columns=MultiIndex.from_tuples( [("a", "x"), ("b", "x")], names=["first", "second"] ), ) tm.assert_frame_equal(result, expected) def test_unstack_preserve_types( self, multiindex_year_month_day_dataframe_random_data ): # GH#403 ymd = multiindex_year_month_day_dataframe_random_data ymd["E"] = "foo" ymd["F"] = 2 unstacked = ymd.unstack("month") assert unstacked["A", 1].dtype == np.float64 assert unstacked["E", 1].dtype == np.object_ assert unstacked["F", 1].dtype == np.float64 def test_unstack_group_index_overflow(self): codes = np.tile(np.arange(500), 2) level = np.arange(500) index = MultiIndex( levels=[level] * 8 + [[0, 1]], codes=[codes] * 8 + [np.arange(2).repeat(500)], ) s = Series(np.arange(1000), index=index) result = s.unstack() assert result.shape == (500, 2) # test roundtrip stacked = result.stack() tm.assert_series_equal(s, stacked.reindex(s.index)) # put it at beginning index = MultiIndex( levels=[[0, 1]] + [level] * 8, codes=[np.arange(2).repeat(500)] + [codes] * 8, ) s = Series(np.arange(1000), index=index) result = s.unstack(0) assert result.shape == (500, 2) # put it in middle index = MultiIndex( levels=[level] * 4 + [[0, 1]] + [level] * 4, codes=([codes] * 4 + [np.arange(2).repeat(500)] + [codes] * 4), ) s = Series(np.arange(1000), index=index) result = s.unstack(4) assert result.shape == (500, 2) def test_unstack_with_missing_int_cast_to_float(self, using_array_manager): # https://github.com/pandas-dev/pandas/issues/37115 df = DataFrame( { "a": ["A", "A", "B"], "b": ["ca", "cb", "cb"], "v": [10] * 3, } ).set_index(["a", "b"]) # add another int column to get 2 blocks df["is_"] = 1 if not using_array_manager: assert len(df._mgr.blocks) == 2 result = df.unstack("b") result[("is_", "ca")] = result[("is_", "ca")].fillna(0) expected = DataFrame( [[10.0, 10.0, 1.0, 1.0], [np.nan, 10.0, 0.0, 1.0]], index=Index(["A", "B"], dtype="object", name="a"), columns=MultiIndex.from_tuples( [("v", "ca"), ("v", "cb"), ("is_", "ca"), ("is_", "cb")], names=[None, "b"], ), ) if using_array_manager: # INFO(ArrayManager) with ArrayManager preserve dtype where possible expected[("v", "cb")] = expected[("v", "cb")].astype("int64") expected[("is_", "cb")] = expected[("is_", "cb")].astype("int64") tm.assert_frame_equal(result, expected) def test_unstack_with_level_has_nan(self): # GH 37510 df1 = DataFrame( { "L1": [1, 2, 3, 4], "L2": [3, 4, 1, 2], "L3": [1, 1, 1, 1], "x": [1, 2, 3, 4], } ) df1 = df1.set_index(["L1", "L2", "L3"]) new_levels = ["n1", "n2", "n3", None] df1.index = df1.index.set_levels(levels=new_levels, level="L1") df1.index = df1.index.set_levels(levels=new_levels, level="L2") result = df1.unstack("L3")[("x", 1)].sort_index().index expected = MultiIndex( levels=[["n1", "n2", "n3", None], ["n1", "n2", "n3", None]], codes=[[0, 1, 2, 3], [2, 3, 0, 1]], names=["L1", "L2"], ) tm.assert_index_equal(result, expected) def test_stack_nan_in_multiindex_columns(self): # GH#39481 df = DataFrame( np.zeros([1, 5]), columns=MultiIndex.from_tuples( [ (0, None, None), (0, 2, 0), (0, 2, 1), (0, 3, 0), (0, 3, 1), ], ), ) result = df.stack(2) expected = DataFrame( [[0.0, np.nan, np.nan], [np.nan, 0.0, 0.0], [np.nan, 0.0, 0.0]], index=Index([(0, None), (0, 0), (0, 1)]), columns=Index([(0, None), (0, 2), (0, 3)]), ) tm.assert_frame_equal(result, expected) def test_multi_level_stack_categorical(self): # GH 15239 midx = MultiIndex.from_arrays( [ ["A"] * 2 + ["B"] * 2, pd.Categorical(list("abab")), pd.Categorical(list("ccdd")), ] ) df = DataFrame(np.arange(8).reshape(2, 4), columns=midx) result = df.stack([1, 2]) expected = DataFrame( [ [0, np.nan], [np.nan, 2], [1, np.nan], [np.nan, 3], [4, np.nan], [np.nan, 6], [5, np.nan], [np.nan, 7], ], columns=["A", "B"], index=MultiIndex.from_arrays( [ [0] * 4 + [1] * 4, pd.Categorical(list("aabbaabb")), pd.Categorical(list("cdcdcdcd")), ] ), ) tm.assert_frame_equal(result, expected) def test_stack_nan_level(self): # GH 9406 df_nan = DataFrame( np.arange(4).reshape(2, 2), columns=MultiIndex.from_tuples( [("A", np.nan), ("B", "b")], names=["Upper", "Lower"] ), index=Index([0, 1], name="Num"), dtype=np.float64, ) result = df_nan.stack() expected = DataFrame( [[0.0, np.nan], [np.nan, 1], [2.0, np.nan], [np.nan, 3.0]], columns=Index(["A", "B"], name="Upper"), index=MultiIndex.from_tuples( [(0, np.nan), (0, "b"), (1, np.nan), (1, "b")], names=["Num", "Lower"] ), ) tm.assert_frame_equal(result, expected) def test_unstack_categorical_columns(self): # GH 14018 idx = MultiIndex.from_product([["A"], [0, 1]]) df = DataFrame({"cat": pd.Categorical(["a", "b"])}, index=idx) result = df.unstack() expected = DataFrame( { 0: pd.Categorical(["a"], categories=["a", "b"]), 1: pd.Categorical(["b"], categories=["a", "b"]), }, index=["A"], ) expected.columns = MultiIndex.from_tuples([("cat", 0), ("cat", 1)]) tm.assert_frame_equal(result, expected) def test_stack_unsorted(self): # GH 16925 PAE = ["ITA", "FRA"] VAR = ["A1", "A2"] TYP = ["CRT", "DBT", "NET"] MI = MultiIndex.from_product([PAE, VAR, TYP], names=["PAE", "VAR", "TYP"]) V = list(range(len(MI))) DF = DataFrame(data=V, index=MI, columns=["VALUE"]) DF = DF.unstack(["VAR", "TYP"]) DF.columns = DF.columns.droplevel(0) DF.loc[:, ("A0", "NET")] = 9999 result = DF.stack(["VAR", "TYP"]).sort_index() expected = DF.sort_index(axis=1).stack(["VAR", "TYP"]).sort_index() tm.assert_series_equal(result, expected) def test_stack_nullable_dtype(self): # GH#43561 columns = MultiIndex.from_product( [["54511", "54515"], ["r", "t_mean"]], names=["station", "element"] ) index = Index([1, 2, 3], name="time") arr = np.array([[50, 226, 10, 215], [10, 215, 9, 220], [305, 232, 111, 220]]) df = DataFrame(arr, columns=columns, index=index, dtype=pd.Int64Dtype()) result = df.stack("station") expected = df.astype(np.int64).stack("station").astype(pd.Int64Dtype()) tm.assert_frame_equal(result, expected) # non-homogeneous case df[df.columns[0]] = df[df.columns[0]].astype(pd.Float64Dtype()) result = df.stack("station") # TODO(EA2D): we get object dtype because DataFrame.values can't # be an EA expected = df.astype(object).stack("station") tm.assert_frame_equal(result, expected)