import numpy as np import pytest import pandas as pd from pandas import ( Categorical, DataFrame, Series, Timestamp, date_range, ) import pandas._testing as tm class TestDataFrameDescribe: def test_describe_bool_in_mixed_frame(self): df = DataFrame( { "string_data": ["a", "b", "c", "d", "e"], "bool_data": [True, True, False, False, False], "int_data": [10, 20, 30, 40, 50], } ) # Integer data are included in .describe() output, # Boolean and string data are not. result = df.describe() expected = DataFrame( {"int_data": [5, 30, df.int_data.std(), 10, 20, 30, 40, 50]}, index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], ) tm.assert_frame_equal(result, expected) # Top value is a boolean value that is False result = df.describe(include=["bool"]) expected = DataFrame( {"bool_data": [5, 2, False, 3]}, index=["count", "unique", "top", "freq"] ) tm.assert_frame_equal(result, expected) def test_describe_empty_object(self): # GH#27183 df = DataFrame({"A": [None, None]}, dtype=object) result = df.describe() expected = DataFrame( {"A": [0, 0, np.nan, np.nan]}, dtype=object, index=["count", "unique", "top", "freq"], ) tm.assert_frame_equal(result, expected) result = df.iloc[:0].describe() tm.assert_frame_equal(result, expected) def test_describe_bool_frame(self): # GH#13891 df = DataFrame( { "bool_data_1": [False, False, True, True], "bool_data_2": [False, True, True, True], } ) result = df.describe() expected = DataFrame( {"bool_data_1": [4, 2, False, 2], "bool_data_2": [4, 2, True, 3]}, index=["count", "unique", "top", "freq"], ) tm.assert_frame_equal(result, expected) df = DataFrame( { "bool_data": [False, False, True, True, False], "int_data": [0, 1, 2, 3, 4], } ) result = df.describe() expected = DataFrame( {"int_data": [5, 2, df.int_data.std(), 0, 1, 2, 3, 4]}, index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], ) tm.assert_frame_equal(result, expected) df = DataFrame( {"bool_data": [False, False, True, True], "str_data": ["a", "b", "c", "a"]} ) result = df.describe() expected = DataFrame( {"bool_data": [4, 2, False, 2], "str_data": [4, 3, "a", 2]}, index=["count", "unique", "top", "freq"], ) tm.assert_frame_equal(result, expected) def test_describe_categorical(self): df = DataFrame({"value": np.random.randint(0, 10000, 100)}) labels = [f"{i} - {i + 499}" for i in range(0, 10000, 500)] cat_labels = Categorical(labels, labels) df = df.sort_values(by=["value"], ascending=True) df["value_group"] = pd.cut( df.value, range(0, 10500, 500), right=False, labels=cat_labels ) cat = df # Categoricals should not show up together with numerical columns result = cat.describe() assert len(result.columns) == 1 # In a frame, describe() for the cat should be the same as for string # arrays (count, unique, top, freq) cat = Categorical( ["a", "b", "b", "b"], categories=["a", "b", "c"], ordered=True ) s = Series(cat) result = s.describe() expected = Series([4, 2, "b", 3], index=["count", "unique", "top", "freq"]) tm.assert_series_equal(result, expected) cat = Series(Categorical(["a", "b", "c", "c"])) df3 = DataFrame({"cat": cat, "s": ["a", "b", "c", "c"]}) result = df3.describe() tm.assert_numpy_array_equal(result["cat"].values, result["s"].values) def test_describe_empty_categorical_column(self): # GH#26397 # Ensure the index of an empty categorical DataFrame column # also contains (count, unique, top, freq) df = DataFrame({"empty_col": Categorical([])}) result = df.describe() expected = DataFrame( {"empty_col": [0, 0, np.nan, np.nan]}, index=["count", "unique", "top", "freq"], dtype="object", ) tm.assert_frame_equal(result, expected) # ensure NaN, not None assert np.isnan(result.iloc[2, 0]) assert np.isnan(result.iloc[3, 0]) def test_describe_categorical_columns(self): # GH#11558 columns = pd.CategoricalIndex(["int1", "int2", "obj"], ordered=True, name="XXX") df = DataFrame( { "int1": [10, 20, 30, 40, 50], "int2": [10, 20, 30, 40, 50], "obj": ["A", 0, None, "X", 1], }, columns=columns, ) result = df.describe() exp_columns = pd.CategoricalIndex( ["int1", "int2"], categories=["int1", "int2", "obj"], ordered=True, name="XXX", ) expected = DataFrame( { "int1": [5, 30, df.int1.std(), 10, 20, 30, 40, 50], "int2": [5, 30, df.int2.std(), 10, 20, 30, 40, 50], }, index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], columns=exp_columns, ) tm.assert_frame_equal(result, expected) tm.assert_categorical_equal(result.columns.values, expected.columns.values) def test_describe_datetime_columns(self): columns = pd.DatetimeIndex( ["2011-01-01", "2011-02-01", "2011-03-01"], freq="MS", tz="US/Eastern", name="XXX", ) df = DataFrame( { 0: [10, 20, 30, 40, 50], 1: [10, 20, 30, 40, 50], 2: ["A", 0, None, "X", 1], } ) df.columns = columns result = df.describe() exp_columns = pd.DatetimeIndex( ["2011-01-01", "2011-02-01"], freq="MS", tz="US/Eastern", name="XXX" ) expected = DataFrame( { 0: [5, 30, df.iloc[:, 0].std(), 10, 20, 30, 40, 50], 1: [5, 30, df.iloc[:, 1].std(), 10, 20, 30, 40, 50], }, index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], ) expected.columns = exp_columns tm.assert_frame_equal(result, expected) assert result.columns.freq == "MS" assert result.columns.tz == expected.columns.tz def test_describe_timedelta_values(self): # GH#6145 t1 = pd.timedelta_range("1 days", freq="D", periods=5) t2 = pd.timedelta_range("1 hours", freq="H", periods=5) df = DataFrame({"t1": t1, "t2": t2}) expected = DataFrame( { "t1": [ 5, pd.Timedelta("3 days"), df.iloc[:, 0].std(), pd.Timedelta("1 days"), pd.Timedelta("2 days"), pd.Timedelta("3 days"), pd.Timedelta("4 days"), pd.Timedelta("5 days"), ], "t2": [ 5, pd.Timedelta("3 hours"), df.iloc[:, 1].std(), pd.Timedelta("1 hours"), pd.Timedelta("2 hours"), pd.Timedelta("3 hours"), pd.Timedelta("4 hours"), pd.Timedelta("5 hours"), ], }, index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], ) result = df.describe() tm.assert_frame_equal(result, expected) exp_repr = ( " t1 t2\n" "count 5 5\n" "mean 3 days 00:00:00 0 days 03:00:00\n" "std 1 days 13:56:50.394919273 0 days 01:34:52.099788303\n" "min 1 days 00:00:00 0 days 01:00:00\n" "25% 2 days 00:00:00 0 days 02:00:00\n" "50% 3 days 00:00:00 0 days 03:00:00\n" "75% 4 days 00:00:00 0 days 04:00:00\n" "max 5 days 00:00:00 0 days 05:00:00" ) assert repr(result) == exp_repr def test_describe_tz_values(self, tz_naive_fixture): # GH#21332 tz = tz_naive_fixture s1 = Series(range(5)) start = Timestamp(2018, 1, 1) end = Timestamp(2018, 1, 5) s2 = Series(date_range(start, end, tz=tz)) df = DataFrame({"s1": s1, "s2": s2}) expected = DataFrame( { "s1": [5, 2, 0, 1, 2, 3, 4, 1.581139], "s2": [ 5, Timestamp(2018, 1, 3).tz_localize(tz), start.tz_localize(tz), s2[1], s2[2], s2[3], end.tz_localize(tz), np.nan, ], }, index=["count", "mean", "min", "25%", "50%", "75%", "max", "std"], ) result = df.describe(include="all", datetime_is_numeric=True) tm.assert_frame_equal(result, expected) def test_datetime_is_numeric_includes_datetime(self): df = DataFrame({"a": date_range("2012", periods=3), "b": [1, 2, 3]}) result = df.describe(datetime_is_numeric=True) expected = DataFrame( { "a": [ 3, Timestamp("2012-01-02"), Timestamp("2012-01-01"), Timestamp("2012-01-01T12:00:00"), Timestamp("2012-01-02"), Timestamp("2012-01-02T12:00:00"), Timestamp("2012-01-03"), np.nan, ], "b": [3, 2, 1, 1.5, 2, 2.5, 3, 1], }, index=["count", "mean", "min", "25%", "50%", "75%", "max", "std"], ) tm.assert_frame_equal(result, expected) def test_describe_tz_values2(self): tz = "CET" s1 = Series(range(5)) start = Timestamp(2018, 1, 1) end = Timestamp(2018, 1, 5) s2 = Series(date_range(start, end, tz=tz)) df = DataFrame({"s1": s1, "s2": s2}) s1_ = s1.describe() s2_ = Series( [ 5, 5, s2.value_counts().index[0], 1, start.tz_localize(tz), end.tz_localize(tz), ], index=["count", "unique", "top", "freq", "first", "last"], ) idx = [ "count", "unique", "top", "freq", "first", "last", "mean", "std", "min", "25%", "50%", "75%", "max", ] expected = pd.concat([s1_, s2_], axis=1, keys=["s1", "s2"]).loc[idx] with tm.assert_produces_warning(FutureWarning): result = df.describe(include="all") tm.assert_frame_equal(result, expected) def test_describe_percentiles_integer_idx(self): # GH#26660 df = DataFrame({"x": [1]}) pct = np.linspace(0, 1, 10 + 1) result = df.describe(percentiles=pct) expected = DataFrame( {"x": [1.0, 1.0, np.NaN, 1.0, *(1.0 for _ in pct), 1.0]}, index=[ "count", "mean", "std", "min", "0%", "10%", "20%", "30%", "40%", "50%", "60%", "70%", "80%", "90%", "100%", "max", ], ) tm.assert_frame_equal(result, expected) def test_describe_does_not_raise_error_for_dictlike_elements(self): # GH#32409 df = DataFrame([{"test": {"a": "1"}}, {"test": {"a": "2"}}]) expected = DataFrame( {"test": [2, 2, {"a": "1"}, 1]}, index=["count", "unique", "top", "freq"] ) result = df.describe() tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("exclude", ["x", "y", ["x", "y"], ["x", "z"]]) def test_describe_when_include_all_exclude_not_allowed(self, exclude): """ When include is 'all', then setting exclude != None is not allowed. """ df = DataFrame({"x": [1], "y": [2], "z": [3]}) msg = "exclude must be None when include is 'all'" with pytest.raises(ValueError, match=msg): df.describe(include="all", exclude=exclude) def test_describe_with_duplicate_columns(self): df = DataFrame( [[1, 1, 1], [2, 2, 2], [3, 3, 3]], columns=["bar", "a", "a"], dtype="float64", ) result = df.describe() ser = df.iloc[:, 0].describe() expected = pd.concat([ser, ser, ser], keys=df.columns, axis=1) tm.assert_frame_equal(result, expected) def test_ea_with_na(self, any_numeric_ea_dtype): # GH#48778 df = DataFrame({"a": [1, pd.NA, pd.NA], "b": pd.NA}, dtype=any_numeric_ea_dtype) result = df.describe() expected = DataFrame( {"a": [1.0, 1.0, pd.NA] + [1.0] * 5, "b": [0.0] + [pd.NA] * 7}, index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], dtype="Float64", ) tm.assert_frame_equal(result, expected)