import numpy as np import pytest from pandas import ( DataFrame, Series, ) import pandas._testing as tm class TestConvert: def test_convert_objects(self, float_string_frame): oops = float_string_frame.T.T converted = oops._convert(datetime=True) tm.assert_frame_equal(converted, float_string_frame) assert converted["A"].dtype == np.float64 # force numeric conversion float_string_frame["H"] = "1." float_string_frame["I"] = "1" # add in some items that will be nan length = len(float_string_frame) float_string_frame["J"] = "1." float_string_frame["K"] = "1" float_string_frame.loc[float_string_frame.index[0:5], ["J", "K"]] = "garbled" converted = float_string_frame._convert(datetime=True, numeric=True) assert converted["H"].dtype == "float64" assert converted["I"].dtype == "int64" assert converted["J"].dtype == "float64" assert converted["K"].dtype == "float64" assert len(converted["J"].dropna()) == length - 5 assert len(converted["K"].dropna()) == length - 5 # via astype converted = float_string_frame.copy() converted["H"] = converted["H"].astype("float64") converted["I"] = converted["I"].astype("int64") assert converted["H"].dtype == "float64" assert converted["I"].dtype == "int64" # via astype, but errors converted = float_string_frame.copy() with pytest.raises(ValueError, match="invalid literal"): converted["H"].astype("int32") def test_convert_mixed_single_column(self): # GH#4119, not converting a mixed type (e.g.floats and object) # mixed in a single column df = DataFrame({"s": Series([1, "na", 3, 4])}) result = df._convert(datetime=True, numeric=True) expected = DataFrame({"s": Series([1, np.nan, 3, 4])}) tm.assert_frame_equal(result, expected) def test_convert_objects_no_conversion(self): mixed1 = DataFrame({"a": [1, 2, 3], "b": [4.0, 5, 6], "c": ["x", "y", "z"]}) mixed2 = mixed1._convert(datetime=True) tm.assert_frame_equal(mixed1, mixed2)