import numpy as np import pytest from pandas import ( DataFrame, Series, ) import pandas._testing as tm class TestLookup: def test_lookup_float(self, float_frame): df = float_frame rows = list(df.index) * len(df.columns) cols = list(df.columns) * len(df.index) with tm.assert_produces_warning(FutureWarning): result = df.lookup(rows, cols) expected = np.array([df.loc[r, c] for r, c in zip(rows, cols)]) tm.assert_numpy_array_equal(result, expected) def test_lookup_mixed(self, float_string_frame): df = float_string_frame rows = list(df.index) * len(df.columns) cols = list(df.columns) * len(df.index) with tm.assert_produces_warning(FutureWarning): result = df.lookup(rows, cols) expected = np.array( [df.loc[r, c] for r, c in zip(rows, cols)], dtype=np.object_ ) tm.assert_almost_equal(result, expected) def test_lookup_bool(self): df = DataFrame( { "label": ["a", "b", "a", "c"], "mask_a": [True, True, False, True], "mask_b": [True, False, False, False], "mask_c": [False, True, False, True], } ) with tm.assert_produces_warning(FutureWarning): df["mask"] = df.lookup(df.index, "mask_" + df["label"]) exp_mask = np.array( [df.loc[r, c] for r, c in zip(df.index, "mask_" + df["label"])] ) tm.assert_series_equal(df["mask"], Series(exp_mask, name="mask")) assert df["mask"].dtype == np.bool_ def test_lookup_raises(self, float_frame): with pytest.raises(KeyError, match="'One or more row labels was not found'"): with tm.assert_produces_warning(FutureWarning): float_frame.lookup(["xyz"], ["A"]) with pytest.raises(KeyError, match="'One or more column labels was not found'"): with tm.assert_produces_warning(FutureWarning): float_frame.lookup([float_frame.index[0]], ["xyz"]) with pytest.raises(ValueError, match="same size"): with tm.assert_produces_warning(FutureWarning): float_frame.lookup(["a", "b", "c"], ["a"]) def test_lookup_requires_unique_axes(self): # GH#33041 raise with a helpful error message df = DataFrame(np.random.randn(6).reshape(3, 2), columns=["A", "A"]) rows = [0, 1] cols = ["A", "A"] # homogeneous-dtype case with pytest.raises(ValueError, match="requires unique index and columns"): with tm.assert_produces_warning(FutureWarning): df.lookup(rows, cols) with pytest.raises(ValueError, match="requires unique index and columns"): with tm.assert_produces_warning(FutureWarning): df.T.lookup(cols, rows) # heterogeneous dtype df["B"] = 0 with pytest.raises(ValueError, match="requires unique index and columns"): with tm.assert_produces_warning(FutureWarning): df.lookup(rows, cols) def test_lookup_deprecated(): # GH#18262 df = DataFrame( {"col": ["A", "A", "B", "B"], "A": [80, 23, np.nan, 22], "B": [80, 55, 76, 67]} ) with tm.assert_produces_warning(FutureWarning): df.lookup(df.index, df["col"])