""" This file contains a minimal set of tests for compliance with the extension array interface test suite, and should contain no other tests. The test suite for the full functionality of the array is located in `pandas/tests/arrays/`. The tests in this file are inherited from the BaseExtensionTests, and only minimal tweaks should be applied to get the tests passing (by overwriting a parent method). Additional tests should either be added to one of the BaseExtensionTests classes (if they are relevant for the extension interface for all dtypes), or be added to the array-specific tests in `pandas/tests/arrays/`. """ import numpy as np import pytest from pandas.errors import PerformanceWarning from pandas.core.dtypes.common import is_object_dtype import pandas as pd from pandas import SparseDtype import pandas._testing as tm from pandas.arrays import SparseArray from pandas.tests.extension import base def make_data(fill_value): if np.isnan(fill_value): data = np.random.uniform(size=100) else: data = np.random.randint(1, 100, size=100) if data[0] == data[1]: data[0] += 1 data[2::3] = fill_value return data @pytest.fixture def dtype(): return SparseDtype() @pytest.fixture(params=[0, np.nan]) def data(request): """Length-100 PeriodArray for semantics test.""" res = SparseArray(make_data(request.param), fill_value=request.param) return res @pytest.fixture def data_for_twos(): return SparseArray(np.ones(100) * 2) @pytest.fixture(params=[0, np.nan]) def data_missing(request): """Length 2 array with [NA, Valid]""" return SparseArray([np.nan, 1], fill_value=request.param) @pytest.fixture(params=[0, np.nan]) def data_repeated(request): """Return different versions of data for count times""" def gen(count): for _ in range(count): yield SparseArray(make_data(request.param), fill_value=request.param) yield gen @pytest.fixture(params=[0, np.nan]) def data_for_sorting(request): return SparseArray([2, 3, 1], fill_value=request.param) @pytest.fixture(params=[0, np.nan]) def data_missing_for_sorting(request): return SparseArray([2, np.nan, 1], fill_value=request.param) @pytest.fixture def na_value(): return np.nan @pytest.fixture def na_cmp(): return lambda left, right: pd.isna(left) and pd.isna(right) @pytest.fixture(params=[0, np.nan]) def data_for_grouping(request): return SparseArray([1, 1, np.nan, np.nan, 2, 2, 1, 3], fill_value=request.param) @pytest.fixture(params=[0, np.nan]) def data_for_compare(request): return SparseArray([0, 0, np.nan, -2, -1, 4, 2, 3, 0, 0], fill_value=request.param) class BaseSparseTests: def _check_unsupported(self, data): if data.dtype == SparseDtype(int, 0): pytest.skip("Can't store nan in int array.") @pytest.mark.xfail(reason="SparseArray does not support setitem") def test_ravel(self, data): super().test_ravel(data) class TestDtype(BaseSparseTests, base.BaseDtypeTests): def test_array_type_with_arg(self, data, dtype): assert dtype.construct_array_type() is SparseArray class TestInterface(BaseSparseTests, base.BaseInterfaceTests): def test_copy(self, data): # __setitem__ does not work, so we only have a smoke-test data.copy() def test_view(self, data): # __setitem__ does not work, so we only have a smoke-test data.view() class TestConstructors(BaseSparseTests, base.BaseConstructorsTests): pass class TestReshaping(BaseSparseTests, base.BaseReshapingTests): def test_concat_mixed_dtypes(self, data): # https://github.com/pandas-dev/pandas/issues/20762 # This should be the same, aside from concat([sparse, float]) df1 = pd.DataFrame({"A": data[:3]}) df2 = pd.DataFrame({"A": [1, 2, 3]}) df3 = pd.DataFrame({"A": ["a", "b", "c"]}).astype("category") dfs = [df1, df2, df3] # dataframes result = pd.concat(dfs) expected = pd.concat( [x.apply(lambda s: np.asarray(s).astype(object)) for x in dfs] ) self.assert_frame_equal(result, expected) @pytest.mark.parametrize( "columns", [ ["A", "B"], pd.MultiIndex.from_tuples( [("A", "a"), ("A", "b")], names=["outer", "inner"] ), ], ) def test_stack(self, data, columns): with tm.assert_produces_warning( FutureWarning, check_stacklevel=False, match="astype from Sparse" ): super().test_stack(data, columns) def test_concat_columns(self, data, na_value): self._check_unsupported(data) super().test_concat_columns(data, na_value) def test_concat_extension_arrays_copy_false(self, data, na_value): self._check_unsupported(data) super().test_concat_extension_arrays_copy_false(data, na_value) def test_align(self, data, na_value): self._check_unsupported(data) super().test_align(data, na_value) def test_align_frame(self, data, na_value): self._check_unsupported(data) super().test_align_frame(data, na_value) def test_align_series_frame(self, data, na_value): self._check_unsupported(data) super().test_align_series_frame(data, na_value) def test_merge(self, data, na_value): self._check_unsupported(data) super().test_merge(data, na_value) @pytest.mark.xfail(reason="SparseArray does not support setitem") def test_transpose(self, data): super().test_transpose(data) class TestGetitem(BaseSparseTests, base.BaseGetitemTests): def test_get(self, data): ser = pd.Series(data, index=[2 * i for i in range(len(data))]) if np.isnan(ser.values.fill_value): assert np.isnan(ser.get(4)) and np.isnan(ser.iloc[2]) else: assert ser.get(4) == ser.iloc[2] assert ser.get(2) == ser.iloc[1] def test_reindex(self, data, na_value): self._check_unsupported(data) super().test_reindex(data, na_value) # Skipping TestSetitem, since we don't implement it. class TestIndex(base.BaseIndexTests): def test_index_from_array(self, data): msg = "will store that array directly" with tm.assert_produces_warning(FutureWarning, match=msg): idx = pd.Index(data) if data.dtype.subtype == "f": assert idx.dtype == np.float64 elif data.dtype.subtype == "i": assert idx.dtype == np.int64 else: assert idx.dtype == data.dtype.subtype # TODO(2.0): should pass once SparseArray is stored directly in Index. @pytest.mark.xfail(reason="Index cannot yet store sparse dtype") def test_index_from_listlike_with_dtype(self, data): msg = "passing a SparseArray to pd.Index" with tm.assert_produces_warning(FutureWarning, match=msg): super().test_index_from_listlike_with_dtype(data) class TestMissing(BaseSparseTests, base.BaseMissingTests): def test_isna(self, data_missing): sarr = SparseArray(data_missing) expected_dtype = SparseDtype(bool, pd.isna(data_missing.dtype.fill_value)) expected = SparseArray([True, False], dtype=expected_dtype) result = sarr.isna() tm.assert_sp_array_equal(result, expected) # test isna for arr without na sarr = sarr.fillna(0) expected_dtype = SparseDtype(bool, pd.isna(data_missing.dtype.fill_value)) expected = SparseArray([False, False], fill_value=False, dtype=expected_dtype) self.assert_equal(sarr.isna(), expected) def test_fillna_limit_pad(self, data_missing): with tm.assert_produces_warning(PerformanceWarning, check_stacklevel=False): super().test_fillna_limit_pad(data_missing) def test_fillna_limit_backfill(self, data_missing): with tm.assert_produces_warning(PerformanceWarning, check_stacklevel=False): super().test_fillna_limit_backfill(data_missing) def test_fillna_no_op_returns_copy(self, data, request): if np.isnan(data.fill_value): request.node.add_marker( pytest.mark.xfail(reason="returns array with different fill value") ) with tm.assert_produces_warning(PerformanceWarning, check_stacklevel=False): super().test_fillna_no_op_returns_copy(data) def test_fillna_series_method(self, data_missing): with tm.assert_produces_warning(PerformanceWarning, check_stacklevel=False): super().test_fillna_limit_backfill(data_missing) @pytest.mark.xfail(reason="Unsupported") def test_fillna_series(self): # this one looks doable. super(self).test_fillna_series() def test_fillna_frame(self, data_missing): # Have to override to specify that fill_value will change. fill_value = data_missing[1] result = pd.DataFrame({"A": data_missing, "B": [1, 2]}).fillna(fill_value) if pd.isna(data_missing.fill_value): dtype = SparseDtype(data_missing.dtype, fill_value) else: dtype = data_missing.dtype expected = pd.DataFrame( { "A": data_missing._from_sequence([fill_value, fill_value], dtype=dtype), "B": [1, 2], } ) self.assert_frame_equal(result, expected) class TestMethods(BaseSparseTests, base.BaseMethodsTests): def test_combine_le(self, data_repeated): # We return a Series[SparseArray].__le__ returns a # Series[Sparse[bool]] # rather than Series[bool] orig_data1, orig_data2 = data_repeated(2) s1 = pd.Series(orig_data1) s2 = pd.Series(orig_data2) result = s1.combine(s2, lambda x1, x2: x1 <= x2) expected = pd.Series( SparseArray( [a <= b for (a, b) in zip(list(orig_data1), list(orig_data2))], fill_value=False, ) ) self.assert_series_equal(result, expected) val = s1.iloc[0] result = s1.combine(val, lambda x1, x2: x1 <= x2) expected = pd.Series( SparseArray([a <= val for a in list(orig_data1)], fill_value=False) ) self.assert_series_equal(result, expected) def test_fillna_copy_frame(self, data_missing): arr = data_missing.take([1, 1]) df = pd.DataFrame({"A": arr}, copy=False) filled_val = df.iloc[0, 0] result = df.fillna(filled_val) if hasattr(df._mgr, "blocks"): assert df.values.base is not result.values.base assert df.A._values.to_dense() is arr.to_dense() def test_fillna_copy_series(self, data_missing): arr = data_missing.take([1, 1]) ser = pd.Series(arr) filled_val = ser[0] result = ser.fillna(filled_val) assert ser._values is not result._values assert ser._values.to_dense() is arr.to_dense() @pytest.mark.xfail(reason="Not Applicable") def test_fillna_length_mismatch(self, data_missing): super().test_fillna_length_mismatch(data_missing) def test_where_series(self, data, na_value): assert data[0] != data[1] cls = type(data) a, b = data[:2] ser = pd.Series(cls._from_sequence([a, a, b, b], dtype=data.dtype)) cond = np.array([True, True, False, False]) result = ser.where(cond) new_dtype = SparseDtype("float", 0.0) expected = pd.Series( cls._from_sequence([a, a, na_value, na_value], dtype=new_dtype) ) self.assert_series_equal(result, expected) other = cls._from_sequence([a, b, a, b], dtype=data.dtype) cond = np.array([True, False, True, True]) result = ser.where(cond, other) expected = pd.Series(cls._from_sequence([a, b, b, b], dtype=data.dtype)) self.assert_series_equal(result, expected) def test_combine_first(self, data, request): if data.dtype.subtype == "int": # Right now this is upcasted to float, just like combine_first # for Series[int] mark = pytest.mark.xfail( reason="TODO(SparseArray.__setitem__) will preserve dtype." ) request.node.add_marker(mark) super().test_combine_first(data) def test_searchsorted(self, data_for_sorting, as_series): with tm.assert_produces_warning(PerformanceWarning, check_stacklevel=False): super().test_searchsorted(data_for_sorting, as_series) def test_shift_0_periods(self, data): # GH#33856 shifting with periods=0 should return a copy, not same obj result = data.shift(0) data._sparse_values[0] = data._sparse_values[1] assert result._sparse_values[0] != result._sparse_values[1] @pytest.mark.parametrize("method", ["argmax", "argmin"]) def test_argmin_argmax_all_na(self, method, data, na_value): # overriding because Sparse[int64, 0] cannot handle na_value self._check_unsupported(data) super().test_argmin_argmax_all_na(method, data, na_value) @pytest.mark.parametrize("box", [pd.array, pd.Series, pd.DataFrame]) def test_equals(self, data, na_value, as_series, box): self._check_unsupported(data) super().test_equals(data, na_value, as_series, box) class TestCasting(BaseSparseTests, base.BaseCastingTests): def test_astype_object_series(self, all_data): # Unlike the base class, we do not expect the resulting Block # to be ObjectBlock / resulting array to be np.dtype("object") ser = pd.Series(all_data, name="A") with tm.assert_produces_warning(FutureWarning, match="astype from Sparse"): result = ser.astype(object) assert is_object_dtype(result.dtype) assert is_object_dtype(result._mgr.array.dtype) def test_astype_object_frame(self, all_data): # Unlike the base class, we do not expect the resulting Block # to be ObjectBlock / resulting array to be np.dtype("object") df = pd.DataFrame({"A": all_data}) with tm.assert_produces_warning(FutureWarning, match="astype from Sparse"): result = df.astype(object) assert is_object_dtype(result._mgr.arrays[0].dtype) # check that we can compare the dtypes comp = result.dtypes == df.dtypes assert not comp.any() def test_astype_str(self, data): with tm.assert_produces_warning(FutureWarning, match="astype from Sparse"): result = pd.Series(data[:5]).astype(str) expected_dtype = SparseDtype(str, str(data.fill_value)) expected = pd.Series([str(x) for x in data[:5]], dtype=expected_dtype) self.assert_series_equal(result, expected) @pytest.mark.xfail(raises=TypeError, reason="no sparse StringDtype") def test_astype_string(self, data): super().test_astype_string(data) class TestArithmeticOps(BaseSparseTests, base.BaseArithmeticOpsTests): series_scalar_exc = None frame_scalar_exc = None divmod_exc = None series_array_exc = None def _skip_if_different_combine(self, data): if data.fill_value == 0: # arith ops call on dtype.fill_value so that the sparsity # is maintained. Combine can't be called on a dtype in # general, so we can't make the expected. This is tested elsewhere pytest.skip("Incorrected expected from Series.combine and tested elsewhere") def test_arith_series_with_scalar(self, data, all_arithmetic_operators): self._skip_if_different_combine(data) super().test_arith_series_with_scalar(data, all_arithmetic_operators) def test_arith_series_with_array(self, data, all_arithmetic_operators): self._skip_if_different_combine(data) super().test_arith_series_with_array(data, all_arithmetic_operators) def test_arith_frame_with_scalar(self, data, all_arithmetic_operators, request): if data.dtype.fill_value != 0: pass elif all_arithmetic_operators.strip("_") not in [ "mul", "rmul", "floordiv", "rfloordiv", "pow", "mod", "rmod", ]: mark = pytest.mark.xfail(reason="result dtype.fill_value mismatch") request.node.add_marker(mark) super().test_arith_frame_with_scalar(data, all_arithmetic_operators) def _check_divmod_op(self, ser, op, other, exc=NotImplementedError): # We implement divmod super()._check_divmod_op(ser, op, other, exc=None) class TestComparisonOps(BaseSparseTests): def _compare_other(self, data_for_compare: SparseArray, comparison_op, other): op = comparison_op result = op(data_for_compare, other) assert isinstance(result, SparseArray) assert result.dtype.subtype == np.bool_ if isinstance(other, SparseArray): fill_value = op(data_for_compare.fill_value, other.fill_value) else: fill_value = np.all( op(np.asarray(data_for_compare.fill_value), np.asarray(other)) ) expected = SparseArray( op(data_for_compare.to_dense(), np.asarray(other)), fill_value=fill_value, dtype=np.bool_, ) tm.assert_sp_array_equal(result, expected) def test_scalar(self, data_for_compare: SparseArray, comparison_op): self._compare_other(data_for_compare, comparison_op, 0) self._compare_other(data_for_compare, comparison_op, 1) self._compare_other(data_for_compare, comparison_op, -1) self._compare_other(data_for_compare, comparison_op, np.nan) @pytest.mark.xfail(reason="Wrong indices") def test_array(self, data_for_compare: SparseArray, comparison_op): arr = np.linspace(-4, 5, 10) self._compare_other(data_for_compare, comparison_op, arr) @pytest.mark.xfail(reason="Wrong indices") def test_sparse_array(self, data_for_compare: SparseArray, comparison_op): arr = data_for_compare + 1 self._compare_other(data_for_compare, comparison_op, arr) arr = data_for_compare * 2 self._compare_other(data_for_compare, comparison_op, arr) class TestPrinting(BaseSparseTests, base.BasePrintingTests): @pytest.mark.xfail(reason="Different repr") def test_array_repr(self, data, size): super().test_array_repr(data, size) class TestParsing(BaseSparseTests, base.BaseParsingTests): @pytest.mark.parametrize("engine", ["c", "python"]) def test_EA_types(self, engine, data): expected_msg = r".*must implement _from_sequence_of_strings.*" with pytest.raises(NotImplementedError, match=expected_msg): with tm.assert_produces_warning(FutureWarning, match="astype from"): super().test_EA_types(engine, data)