""" Tests for DatetimeArray """ import operator import numpy as np import pytest from pandas._libs.tslibs import tz_compare from pandas._libs.tslibs.dtypes import NpyDatetimeUnit from pandas.core.dtypes.dtypes import DatetimeTZDtype import pandas as pd import pandas._testing as tm from pandas.core.arrays import DatetimeArray class TestNonNano: @pytest.fixture(params=["s", "ms", "us"]) def unit(self, request): """Fixture returning parametrized time units""" return request.param @pytest.fixture def reso(self, unit): """Fixture returning datetime resolution for a given time unit""" return { "s": NpyDatetimeUnit.NPY_FR_s.value, "ms": NpyDatetimeUnit.NPY_FR_ms.value, "us": NpyDatetimeUnit.NPY_FR_us.value, }[unit] @pytest.fixture def dtype(self, unit, tz_naive_fixture): tz = tz_naive_fixture if tz is None: return np.dtype(f"datetime64[{unit}]") else: return DatetimeTZDtype(unit=unit, tz=tz) @pytest.fixture def dta_dti(self, unit, dtype): tz = getattr(dtype, "tz", None) dti = pd.date_range("2016-01-01", periods=55, freq="D", tz=tz) if tz is None: arr = np.asarray(dti).astype(f"M8[{unit}]") else: arr = np.asarray(dti.tz_convert("UTC").tz_localize(None)).astype( f"M8[{unit}]" ) dta = DatetimeArray._simple_new(arr, dtype=dtype) return dta, dti @pytest.fixture def dta(self, dta_dti): dta, dti = dta_dti return dta def test_non_nano(self, unit, reso, dtype): arr = np.arange(5, dtype=np.int64).view(f"M8[{unit}]") dta = DatetimeArray._simple_new(arr, dtype=dtype) assert dta.dtype == dtype assert dta[0]._reso == reso assert tz_compare(dta.tz, dta[0].tz) assert (dta[0] == dta[:1]).all() @pytest.mark.filterwarnings( "ignore:weekofyear and week have been deprecated:FutureWarning" ) @pytest.mark.parametrize( "field", DatetimeArray._field_ops + DatetimeArray._bool_ops ) def test_fields(self, unit, reso, field, dtype, dta_dti): dta, dti = dta_dti # FIXME: assert (dti == dta).all() res = getattr(dta, field) expected = getattr(dti._data, field) tm.assert_numpy_array_equal(res, expected) def test_normalize(self, unit): dti = pd.date_range("2016-01-01 06:00:00", periods=55, freq="D") arr = np.asarray(dti).astype(f"M8[{unit}]") dta = DatetimeArray._simple_new(arr, dtype=arr.dtype) assert not dta.is_normalized # TODO: simplify once we can just .astype to other unit exp = np.asarray(dti.normalize()).astype(f"M8[{unit}]") expected = DatetimeArray._simple_new(exp, dtype=exp.dtype) res = dta.normalize() tm.assert_extension_array_equal(res, expected) def test_simple_new_requires_match(self, unit): arr = np.arange(5, dtype=np.int64).view(f"M8[{unit}]") dtype = DatetimeTZDtype(unit, "UTC") dta = DatetimeArray._simple_new(arr, dtype=dtype) assert dta.dtype == dtype wrong = DatetimeTZDtype("ns", "UTC") with pytest.raises(AssertionError, match=""): DatetimeArray._simple_new(arr, dtype=wrong) def test_std_non_nano(self, unit): dti = pd.date_range("2016-01-01", periods=55, freq="D") arr = np.asarray(dti).astype(f"M8[{unit}]") dta = DatetimeArray._simple_new(arr, dtype=arr.dtype) # we should match the nano-reso std, but floored to our reso. res = dta.std() assert res._reso == dta._reso assert res == dti.std().floor(unit) @pytest.mark.filterwarnings("ignore:Converting to PeriodArray.*:UserWarning") def test_to_period(self, dta_dti): dta, dti = dta_dti result = dta.to_period("D") expected = dti._data.to_period("D") tm.assert_extension_array_equal(result, expected) def test_iter(self, dta): res = next(iter(dta)) expected = dta[0] assert type(res) is pd.Timestamp assert res.value == expected.value assert res._reso == expected._reso assert res == expected def test_astype_object(self, dta): result = dta.astype(object) assert all(x._reso == dta._reso for x in result) assert all(x == y for x, y in zip(result, dta)) def test_to_pydatetime(self, dta_dti): dta, dti = dta_dti result = dta.to_pydatetime() expected = dti.to_pydatetime() tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("meth", ["time", "timetz", "date"]) def test_time_date(self, dta_dti, meth): dta, dti = dta_dti result = getattr(dta, meth) expected = getattr(dti, meth) tm.assert_numpy_array_equal(result, expected) def test_format_native_types(self, unit, reso, dtype, dta_dti): # In this case we should get the same formatted values with our nano # version dti._data as we do with the non-nano dta dta, dti = dta_dti res = dta._format_native_types() exp = dti._data._format_native_types() tm.assert_numpy_array_equal(res, exp) def test_repr(self, dta_dti, unit): dta, dti = dta_dti assert repr(dta) == repr(dti._data).replace("[ns", f"[{unit}") # TODO: tests with td64 def test_compare_mismatched_resolutions(self, comparison_op): # comparison that numpy gets wrong bc of silent overflows op = comparison_op iinfo = np.iinfo(np.int64) vals = np.array([iinfo.min, iinfo.min + 1, iinfo.max], dtype=np.int64) # Construct so that arr2[1] < arr[1] < arr[2] < arr2[2] arr = np.array(vals).view("M8[ns]") arr2 = arr.view("M8[s]") left = DatetimeArray._simple_new(arr, dtype=arr.dtype) right = DatetimeArray._simple_new(arr2, dtype=arr2.dtype) if comparison_op is operator.eq: expected = np.array([False, False, False]) elif comparison_op is operator.ne: expected = np.array([True, True, True]) elif comparison_op in [operator.lt, operator.le]: expected = np.array([False, False, True]) else: expected = np.array([False, True, False]) result = op(left, right) tm.assert_numpy_array_equal(result, expected) result = op(left[1], right) tm.assert_numpy_array_equal(result, expected) if op not in [operator.eq, operator.ne]: # check that numpy still gets this wrong; if it is fixed we may be # able to remove compare_mismatched_resolutions np_res = op(left._ndarray, right._ndarray) tm.assert_numpy_array_equal(np_res[1:], ~expected[1:]) class TestDatetimeArrayComparisons: # TODO: merge this into tests/arithmetic/test_datetime64 once it is # sufficiently robust def test_cmp_dt64_arraylike_tznaive(self, comparison_op): # arbitrary tz-naive DatetimeIndex op = comparison_op dti = pd.date_range("2016-01-1", freq="MS", periods=9, tz=None) arr = DatetimeArray(dti) assert arr.freq == dti.freq assert arr.tz == dti.tz right = dti expected = np.ones(len(arr), dtype=bool) if comparison_op.__name__ in ["ne", "gt", "lt"]: # for these the comparisons should be all-False expected = ~expected result = op(arr, arr) tm.assert_numpy_array_equal(result, expected) for other in [ right, np.array(right), list(right), tuple(right), right.astype(object), ]: result = op(arr, other) tm.assert_numpy_array_equal(result, expected) result = op(other, arr) tm.assert_numpy_array_equal(result, expected) class TestDatetimeArray: def test_astype_non_nano_tznaive(self): dti = pd.date_range("2016-01-01", periods=3) res = dti.astype("M8[s]") assert res.dtype == "M8[s]" dta = dti._data res = dta.astype("M8[s]") assert res.dtype == "M8[s]" assert isinstance(res, pd.core.arrays.DatetimeArray) # used to be ndarray def test_astype_non_nano_tzaware(self): dti = pd.date_range("2016-01-01", periods=3, tz="UTC") res = dti.astype("M8[s, US/Pacific]") assert res.dtype == "M8[s, US/Pacific]" dta = dti._data res = dta.astype("M8[s, US/Pacific]") assert res.dtype == "M8[s, US/Pacific]" # from non-nano to non-nano, preserving reso res2 = res.astype("M8[s, UTC]") assert res2.dtype == "M8[s, UTC]" assert not tm.shares_memory(res2, res) res3 = res.astype("M8[s, UTC]", copy=False) assert res2.dtype == "M8[s, UTC]" assert tm.shares_memory(res3, res) def test_astype_to_same(self): arr = DatetimeArray._from_sequence( ["2000"], dtype=DatetimeTZDtype(tz="US/Central") ) result = arr.astype(DatetimeTZDtype(tz="US/Central"), copy=False) assert result is arr @pytest.mark.parametrize("dtype", ["datetime64[ns]", "datetime64[ns, UTC]"]) @pytest.mark.parametrize( "other", ["datetime64[ns]", "datetime64[ns, UTC]", "datetime64[ns, CET]"] ) def test_astype_copies(self, dtype, other): # https://github.com/pandas-dev/pandas/pull/32490 ser = pd.Series([1, 2], dtype=dtype) orig = ser.copy() warn = None if (dtype == "datetime64[ns]") ^ (other == "datetime64[ns]"): # deprecated in favor of tz_localize warn = FutureWarning with tm.assert_produces_warning(warn): t = ser.astype(other) t[:] = pd.NaT tm.assert_series_equal(ser, orig) @pytest.mark.parametrize("dtype", [int, np.int32, np.int64, "uint32", "uint64"]) def test_astype_int(self, dtype): arr = DatetimeArray._from_sequence([pd.Timestamp("2000"), pd.Timestamp("2001")]) if np.dtype(dtype).kind == "u": expected_dtype = np.dtype("uint64") else: expected_dtype = np.dtype("int64") expected = arr.astype(expected_dtype) warn = None if dtype != expected_dtype: warn = FutureWarning msg = " will return exactly the specified dtype" with tm.assert_produces_warning(warn, match=msg): result = arr.astype(dtype) assert result.dtype == expected_dtype tm.assert_numpy_array_equal(result, expected) def test_tz_setter_raises(self): arr = DatetimeArray._from_sequence( ["2000"], dtype=DatetimeTZDtype(tz="US/Central") ) with pytest.raises(AttributeError, match="tz_localize"): arr.tz = "UTC" def test_setitem_str_impute_tz(self, tz_naive_fixture): # Like for getitem, if we are passed a naive-like string, we impute # our own timezone. tz = tz_naive_fixture data = np.array([1, 2, 3], dtype="M8[ns]") dtype = data.dtype if tz is None else DatetimeTZDtype(tz=tz) arr = DatetimeArray(data, dtype=dtype) expected = arr.copy() ts = pd.Timestamp("2020-09-08 16:50").tz_localize(tz) setter = str(ts.tz_localize(None)) # Setting a scalar tznaive string expected[0] = ts arr[0] = setter tm.assert_equal(arr, expected) # Setting a listlike of tznaive strings expected[1] = ts arr[:2] = [setter, setter] tm.assert_equal(arr, expected) def test_setitem_different_tz_raises(self): data = np.array([1, 2, 3], dtype="M8[ns]") arr = DatetimeArray(data, copy=False, dtype=DatetimeTZDtype(tz="US/Central")) with pytest.raises(TypeError, match="Cannot compare tz-naive and tz-aware"): arr[0] = pd.Timestamp("2000") ts = pd.Timestamp("2000", tz="US/Eastern") with pytest.raises(ValueError, match="US/Central"): with tm.assert_produces_warning( FutureWarning, match="mismatched timezones" ): arr[0] = ts # once deprecation is enforced # assert arr[0] == ts.tz_convert("US/Central") def test_setitem_clears_freq(self): a = DatetimeArray(pd.date_range("2000", periods=2, freq="D", tz="US/Central")) a[0] = pd.Timestamp("2000", tz="US/Central") assert a.freq is None @pytest.mark.parametrize( "obj", [ pd.Timestamp("2021-01-01"), pd.Timestamp("2021-01-01").to_datetime64(), pd.Timestamp("2021-01-01").to_pydatetime(), ], ) def test_setitem_objects(self, obj): # make sure we accept datetime64 and datetime in addition to Timestamp dti = pd.date_range("2000", periods=2, freq="D") arr = dti._data arr[0] = obj assert arr[0] == obj def test_repeat_preserves_tz(self): dti = pd.date_range("2000", periods=2, freq="D", tz="US/Central") arr = DatetimeArray(dti) repeated = arr.repeat([1, 1]) # preserves tz and values, but not freq expected = DatetimeArray(arr.asi8, freq=None, dtype=arr.dtype) tm.assert_equal(repeated, expected) def test_value_counts_preserves_tz(self): dti = pd.date_range("2000", periods=2, freq="D", tz="US/Central") arr = DatetimeArray(dti).repeat([4, 3]) result = arr.value_counts() # Note: not tm.assert_index_equal, since `freq`s do not match assert result.index.equals(dti) arr[-2] = pd.NaT result = arr.value_counts(dropna=False) expected = pd.Series([4, 2, 1], index=[dti[0], dti[1], pd.NaT]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("method", ["pad", "backfill"]) def test_fillna_preserves_tz(self, method): dti = pd.date_range("2000-01-01", periods=5, freq="D", tz="US/Central") arr = DatetimeArray(dti, copy=True) arr[2] = pd.NaT fill_val = dti[1] if method == "pad" else dti[3] expected = DatetimeArray._from_sequence( [dti[0], dti[1], fill_val, dti[3], dti[4]], dtype=DatetimeTZDtype(tz="US/Central"), ) result = arr.fillna(method=method) tm.assert_extension_array_equal(result, expected) # assert that arr and dti were not modified in-place assert arr[2] is pd.NaT assert dti[2] == pd.Timestamp("2000-01-03", tz="US/Central") def test_fillna_2d(self): dti = pd.date_range("2016-01-01", periods=6, tz="US/Pacific") dta = dti._data.reshape(3, 2).copy() dta[0, 1] = pd.NaT dta[1, 0] = pd.NaT res1 = dta.fillna(method="pad") expected1 = dta.copy() expected1[1, 0] = dta[0, 0] tm.assert_extension_array_equal(res1, expected1) res2 = dta.fillna(method="backfill") expected2 = dta.copy() expected2 = dta.copy() expected2[1, 0] = dta[2, 0] expected2[0, 1] = dta[1, 1] tm.assert_extension_array_equal(res2, expected2) # with different ordering for underlying ndarray; behavior should # be unchanged dta2 = dta._from_backing_data(dta._ndarray.copy(order="F")) assert dta2._ndarray.flags["F_CONTIGUOUS"] assert not dta2._ndarray.flags["C_CONTIGUOUS"] tm.assert_extension_array_equal(dta, dta2) res3 = dta2.fillna(method="pad") tm.assert_extension_array_equal(res3, expected1) res4 = dta2.fillna(method="backfill") tm.assert_extension_array_equal(res4, expected2) # test the DataFrame method while we're here df = pd.DataFrame(dta) res = df.fillna(method="pad") expected = pd.DataFrame(expected1) tm.assert_frame_equal(res, expected) res = df.fillna(method="backfill") expected = pd.DataFrame(expected2) tm.assert_frame_equal(res, expected) def test_array_interface_tz(self): tz = "US/Central" data = DatetimeArray(pd.date_range("2017", periods=2, tz=tz)) result = np.asarray(data) expected = np.array( [ pd.Timestamp("2017-01-01T00:00:00", tz=tz), pd.Timestamp("2017-01-02T00:00:00", tz=tz), ], dtype=object, ) tm.assert_numpy_array_equal(result, expected) result = np.asarray(data, dtype=object) tm.assert_numpy_array_equal(result, expected) result = np.asarray(data, dtype="M8[ns]") expected = np.array( ["2017-01-01T06:00:00", "2017-01-02T06:00:00"], dtype="M8[ns]" ) tm.assert_numpy_array_equal(result, expected) def test_array_interface(self): data = DatetimeArray(pd.date_range("2017", periods=2)) expected = np.array( ["2017-01-01T00:00:00", "2017-01-02T00:00:00"], dtype="datetime64[ns]" ) result = np.asarray(data) tm.assert_numpy_array_equal(result, expected) result = np.asarray(data, dtype=object) expected = np.array( [pd.Timestamp("2017-01-01T00:00:00"), pd.Timestamp("2017-01-02T00:00:00")], dtype=object, ) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("index", [True, False]) def test_searchsorted_different_tz(self, index): data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 arr = DatetimeArray(data, freq="D").tz_localize("Asia/Tokyo") if index: arr = pd.Index(arr) expected = arr.searchsorted(arr[2]) result = arr.searchsorted(arr[2].tz_convert("UTC")) assert result == expected expected = arr.searchsorted(arr[2:6]) result = arr.searchsorted(arr[2:6].tz_convert("UTC")) tm.assert_equal(result, expected) @pytest.mark.parametrize("index", [True, False]) def test_searchsorted_tzawareness_compat(self, index): data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 arr = DatetimeArray(data, freq="D") if index: arr = pd.Index(arr) mismatch = arr.tz_localize("Asia/Tokyo") msg = "Cannot compare tz-naive and tz-aware datetime-like objects" with pytest.raises(TypeError, match=msg): arr.searchsorted(mismatch[0]) with pytest.raises(TypeError, match=msg): arr.searchsorted(mismatch) with pytest.raises(TypeError, match=msg): mismatch.searchsorted(arr[0]) with pytest.raises(TypeError, match=msg): mismatch.searchsorted(arr) @pytest.mark.parametrize( "other", [ 1, np.int64(1), 1.0, np.timedelta64("NaT"), pd.Timedelta(days=2), "invalid", np.arange(10, dtype="i8") * 24 * 3600 * 10**9, np.arange(10).view("timedelta64[ns]") * 24 * 3600 * 10**9, pd.Timestamp("2021-01-01").to_period("D"), ], ) @pytest.mark.parametrize("index", [True, False]) def test_searchsorted_invalid_types(self, other, index): data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 arr = DatetimeArray(data, freq="D") if index: arr = pd.Index(arr) msg = "|".join( [ "searchsorted requires compatible dtype or scalar", "value should be a 'Timestamp', 'NaT', or array of those. Got", ] ) with pytest.raises(TypeError, match=msg): arr.searchsorted(other) def test_shift_fill_value(self): dti = pd.date_range("2016-01-01", periods=3) dta = dti._data expected = DatetimeArray(np.roll(dta._data, 1)) fv = dta[-1] for fill_value in [fv, fv.to_pydatetime(), fv.to_datetime64()]: result = dta.shift(1, fill_value=fill_value) tm.assert_datetime_array_equal(result, expected) dta = dta.tz_localize("UTC") expected = expected.tz_localize("UTC") fv = dta[-1] for fill_value in [fv, fv.to_pydatetime()]: result = dta.shift(1, fill_value=fill_value) tm.assert_datetime_array_equal(result, expected) def test_shift_value_tzawareness_mismatch(self): dti = pd.date_range("2016-01-01", periods=3) dta = dti._data fv = dta[-1].tz_localize("UTC") for invalid in [fv, fv.to_pydatetime()]: with pytest.raises(TypeError, match="Cannot compare"): dta.shift(1, fill_value=invalid) dta = dta.tz_localize("UTC") fv = dta[-1].tz_localize(None) for invalid in [fv, fv.to_pydatetime(), fv.to_datetime64()]: with pytest.raises(TypeError, match="Cannot compare"): dta.shift(1, fill_value=invalid) def test_shift_requires_tzmatch(self): # since filling is setitem-like, we require a matching timezone, # not just matching tzawawreness dti = pd.date_range("2016-01-01", periods=3, tz="UTC") dta = dti._data fill_value = pd.Timestamp("2020-10-18 18:44", tz="US/Pacific") msg = "Timezones don't match. 'UTC' != 'US/Pacific'" with pytest.raises(ValueError, match=msg): with tm.assert_produces_warning( FutureWarning, match="mismatched timezones" ): dta.shift(1, fill_value=fill_value) # once deprecation is enforced # expected = dta.shift(1, fill_value=fill_value.tz_convert("UTC")) # tm.assert_equal(result, expected) def test_tz_localize_t2d(self): dti = pd.date_range("1994-05-12", periods=12, tz="US/Pacific") dta = dti._data.reshape(3, 4) result = dta.tz_localize(None) expected = dta.ravel().tz_localize(None).reshape(dta.shape) tm.assert_datetime_array_equal(result, expected) roundtrip = expected.tz_localize("US/Pacific") tm.assert_datetime_array_equal(roundtrip, dta)