import numpy as np import pytest import pandas as pd from pandas import RangeIndex import pandas._testing as tm from pandas.core.api import ( Float64Index, Int64Index, UInt64Index, ) from pandas.core.computation import expressions as expr @pytest.fixture( autouse=True, scope="module", params=[0, 1000000], ids=["numexpr", "python"] ) def switch_numexpr_min_elements(request): _MIN_ELEMENTS = expr._MIN_ELEMENTS expr._MIN_ELEMENTS = request.param yield request.param expr._MIN_ELEMENTS = _MIN_ELEMENTS # ------------------------------------------------------------------ # doctest with +SKIP for one fixture fails during setup with # 'DoctestItem' object has no attribute 'callspec' # due to switch_numexpr_min_elements fixture @pytest.fixture(params=[1, np.array(1, dtype=np.int64)]) def one(request): """ Several variants of integer value 1. The zero-dim integer array behaves like an integer. This fixture can be used to check that datetimelike indexes handle addition and subtraction of integers and zero-dimensional arrays of integers. Examples -------- dti = pd.date_range('2016-01-01', periods=2, freq='H') dti DatetimeIndex(['2016-01-01 00:00:00', '2016-01-01 01:00:00'], dtype='datetime64[ns]', freq='H') dti + one DatetimeIndex(['2016-01-01 01:00:00', '2016-01-01 02:00:00'], dtype='datetime64[ns]', freq='H') """ return request.param zeros = [ box_cls([0] * 5, dtype=dtype) for box_cls in [pd.Index, np.array, pd.array] for dtype in [np.int64, np.uint64, np.float64] ] zeros.extend( [box_cls([-0.0] * 5, dtype=np.float64) for box_cls in [pd.Index, np.array]] ) zeros.extend([np.array(0, dtype=dtype) for dtype in [np.int64, np.uint64, np.float64]]) zeros.extend([np.array(-0.0, dtype=np.float64)]) zeros.extend([0, 0.0, -0.0]) # doctest with +SKIP for zero fixture fails during setup with # 'DoctestItem' object has no attribute 'callspec' # due to switch_numexpr_min_elements fixture @pytest.fixture(params=zeros) def zero(request): """ Several types of scalar zeros and length 5 vectors of zeros. This fixture can be used to check that numeric-dtype indexes handle division by any zero numeric-dtype. Uses vector of length 5 for broadcasting with `numeric_idx` fixture, which creates numeric-dtype vectors also of length 5. Examples -------- arr = RangeIndex(5) arr / zeros Float64Index([nan, inf, inf, inf, inf], dtype='float64') """ return request.param # ------------------------------------------------------------------ # Vector Fixtures @pytest.fixture( params=[ Float64Index(np.arange(5, dtype="float64")), Int64Index(np.arange(5, dtype="int64")), UInt64Index(np.arange(5, dtype="uint64")), RangeIndex(5), ], ids=lambda x: type(x).__name__, ) def numeric_idx(request): """ Several types of numeric-dtypes Index objects """ return request.param # ------------------------------------------------------------------ # Scalar Fixtures @pytest.fixture( params=[ pd.Timedelta("10m7s").to_pytimedelta(), pd.Timedelta("10m7s"), pd.Timedelta("10m7s").to_timedelta64(), ], ids=lambda x: type(x).__name__, ) def scalar_td(request): """ Several variants of Timedelta scalars representing 10 minutes and 7 seconds. """ return request.param @pytest.fixture( params=[ pd.offsets.Day(3), pd.offsets.Hour(72), pd.Timedelta(days=3).to_pytimedelta(), pd.Timedelta("72:00:00"), np.timedelta64(3, "D"), np.timedelta64(72, "h"), ], ids=lambda x: type(x).__name__, ) def three_days(request): """ Several timedelta-like and DateOffset objects that each represent a 3-day timedelta """ return request.param @pytest.fixture( params=[ pd.offsets.Hour(2), pd.offsets.Minute(120), pd.Timedelta(hours=2).to_pytimedelta(), pd.Timedelta(seconds=2 * 3600), np.timedelta64(2, "h"), np.timedelta64(120, "m"), ], ids=lambda x: type(x).__name__, ) def two_hours(request): """ Several timedelta-like and DateOffset objects that each represent a 2-hour timedelta """ return request.param _common_mismatch = [ pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), ] @pytest.fixture( params=[ pd.Timedelta(minutes=30).to_pytimedelta(), np.timedelta64(30, "s"), pd.Timedelta(seconds=30), ] + _common_mismatch ) def not_hourly(request): """ Several timedelta-like and DateOffset instances that are _not_ compatible with Hourly frequencies. """ return request.param @pytest.fixture( params=[ np.timedelta64(4, "h"), pd.Timedelta(hours=23).to_pytimedelta(), pd.Timedelta("23:00:00"), ] + _common_mismatch ) def not_daily(request): """ Several timedelta-like and DateOffset instances that are _not_ compatible with Daily frequencies. """ return request.param @pytest.fixture( params=[ np.timedelta64(365, "D"), pd.Timedelta(days=365).to_pytimedelta(), pd.Timedelta(days=365), ] + _common_mismatch ) def mismatched_freq(request): """ Several timedelta-like and DateOffset instances that are _not_ compatible with Monthly or Annual frequencies. """ return request.param # ------------------------------------------------------------------ @pytest.fixture( params=[pd.Index, pd.Series, tm.to_array, np.array, list], ids=lambda x: x.__name__ ) def box_1d_array(request): """ Fixture to test behavior for Index, Series, tm.to_array, numpy Array and list classes """ return request.param